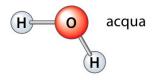
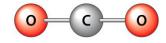
Prof. Roberto Capone

Liceo Statale «de Caprariis»

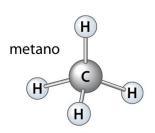
Termologia

A.S. 2013/2014 Classe IV Liceo Scientifico


Calore e temperatura


- 1. La misura della temperatura
- 2. La dilatazione termica
- 3. La legge fondamentale della termologia
- 4. Il calore latente
- 5. La propagazione del calore

La temperatura è una misura dell'agitazione termica di una sostanza ovvero una misura indiretta dell'energia cinetica media delle molecole che costituiscono la sostanza.


Si misura con il termometro

Struttura di alcune molecole.

anidride carbonica

- □ Le sostanze sono composte da **atomi**. Quando due o più atomi si legano assieme formano **molecole**. La molecola d'acqua è formata da due atomi di idrogeno (simbolo H) e da un atomo di ossigeno (simbolo O).
- ☐ Tra le molecole di una sostanza agiscono le **forze di coesione molecolare.**
- Queste forze hanno intensità diversa a seconda dello **stato di aggregazione** in cui si trova la sostanza

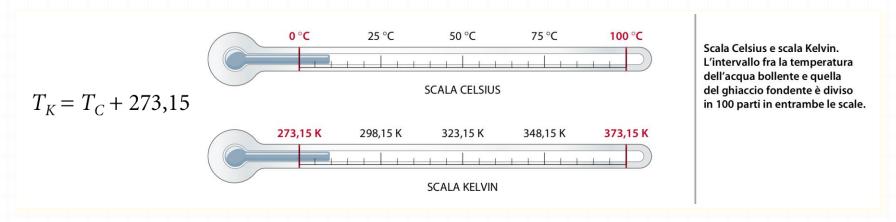
□Stato Solido

Struttura microscopica ordinata – Forze di coesione intense – Particelle oscillano intorno a posizioni di equilibrio, senza spostarsi –

□Stato Liquido

Struttura microscopica disordinata – Forze di coesione deboli – Le molecole si muovono, ma le distanze reciproche variano poco

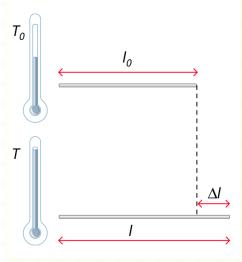
Stato Gassoso


Forze di coesione trascurabili – Le molecole occupano tutto lo spazio a disposizione – Fortemente comprimibili

- ☐ Indipendentemente dallo **stato di aggregazione**, le molecole sono soggette continuamente a un **moto di agitazione termica**
- □ La **temperatura** è un indice dello stato di agitazione termica: più grande è l'agitazione termica, maggiore è la temperatura.
- □ Equilibrio termico: due corpi a temperatura diversa posti a contatto, dopo un certo tempo assumono una temperatura intermedia comune
- □Il **termometro** è lo strumento che **misura** la **temperatura**
- □ Nel SI la temperatura si misura in kelvin (K), anche se è molto diffuso l'uso del grado celsius o centigrado (°C).

□ Scala Celsius: suddivide in 100 parti l'intervallo tra due punti fissi

0° C: temperatura **ghiaccio fondente**


100 °C: temperatura acqua bollente (a pressione atmosferica)
La suddivisione della scala Kelvin è la stessa della Celsius, ma
l'origine della scala è traslata: 0 ° C corrispondono a 273,15 K

Solidi, liquidi e gas, in genere cambiano dimensioni quando la temperatura varia; il cambiamento dipende dalle caratteristiche delle sostanze

Dilatazione termica: **aumento di volume** dei corpi dovuto all'**aumento della temperatura**.

Il filo di ferro subisce un aumento di lunghezza $\Delta I = I - I_0$, quando la temperatura aumenta di ΔT .

Se una dimensione **prevale** sulle altre due (come per un filo o un'asta) si parla di **dilatazione lineare**

Dilatazione lineare: l'aumento di lunghezza Δl (Δl

- $= l l_0$) dipende dalla sostanza di cui è fatto il corpo ed è **direttamente proporzionale**:
- -alla lunghezza iniziale l_0 del corpo;
- -alla variazione di temperatura ΔT ($\Delta T = T T_0$) subita dal corpo.

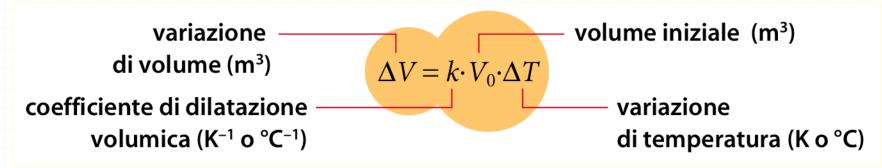
Legge della dilatazione lineare

coefficiente di dilatazione lineare (K
$$^{-1}$$
 o °C $^{-1}$)
$$\Delta l = \lambda \cdot l_0 \cdot \Delta T \qquad \text{di temperatura (K o °C)}$$
 allungamento (m)

Nel SI il coefficiente di dilatazione lineare λ si misura in K⁻¹

$$\lambda = \frac{\Delta l}{l_0 \cdot \Delta T} = \frac{\mathbf{m}}{\mathbf{m} \cdot \mathbf{K}} = \frac{1}{\mathbf{K}} = \mathbf{K}^{-1}$$

La variazione di temperatura $\Delta T = T - T_0$ ha lo stesso valore numerico espressa in K e in ° C, pertanto λ ha lo stesso valore in K⁻¹ o in ° C⁻¹


Tabella 1 Coefficienti di dilatazione lineare di alcuni solidi (K ⁻¹ o °C ⁻¹)					
Metalli				Leghe	
Alluminio	24×10^{-6}	Argento	19×10^{-6}	Acciaio	1×10^{-5}
Ferro	12×10^{-6}	Oro	14×10^{-6}	Ghisa	1×10^{-5}
Piombo	29×10^{-6}	Platino	9×10^{-6}	Bronzo	2×10^{-5}
Rame	16×10^{-6}	Zinco	17×10^{-6}	Ottone	2×10^{-5}

ESEMPIO 1 Un filo di ferro lungo 1,0 m che aumenta la temperatura di 100 °C, subisce un allungamento di 1,2 mm. Infatti:

$$\Delta I = \lambda \cdot I_0 \cdot \Delta T = (12 \times 10^{-6} \, {}^{\circ}\text{C}^{-1}) \times (1.0 \, \text{m}) \times (100 \, {}^{\circ}\text{C}) =$$

= $(0.000012 \times 1.0 \times 100) \, \text{m} = 0.0012 \, \text{m}$

Nelle stesse condizioni, un filo lungo due metri si allungherebbe del doppio.

Legge di dilatazione volumica (solidi e liquidi)

Nel **SI** il **coefficiente di dilatazione volumica k** si misura in K⁻¹

Per i **solidi**, $k \approx 3 \cdot \lambda$ (il coefficiente di dilatazione **volumica** è circa il **triplo** di quello **lineare**).

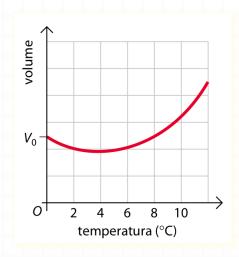
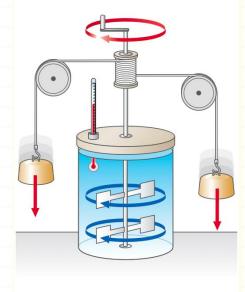

Per i liquidi, k è molto maggiore rispetto al caso dei solidi

Tabella 2 Coefficienti di dilatazione lineare di alcuni liquidi (K ⁻¹ o °C ⁻¹)			
Mercurio	$1,82 \times 10^{-4}$	Alcol	10×10^{-4}
Glicerina	5×10^{-4}	Etere	15×10^{-4}
Acqua	4.6×10^{-4}	Latte	8.0×10^{-4}

Comportamento anomalo dell'acqua


Nell'intervallo tra 0 ° C e 4° C il volume dell'acqua non cresce con l'aumentare della temperatura, ma diminuisce (il coefficiente di dilatazione è negativo).

Al di sopra di 4° C l'acqua si dilata normalmente

Per aumentare la temperatura di un corpo bisogna fornirgli una quantità di calore, che dipende dalla massa e dalle caratteristiche del corpo

I due pesi cadendo fanno girare le pale del mulinello, che mescolano l'acqua e fanno aumentare la sua temperatura.

□Per aumentare la temperatura di un corpo occorre trasferirgli energia.

Il trasferimento di energia può avvenire con uno scambio di calore (contatto con una fiamma o un corpo più caldo, ...) o con uno scambio di lavoro

■Esperimento di Joule

Per fare crescere di 1 K la temperatura di 1 kg di acqua, occorre compiere un lavoro pari a circa 4180

Tabella 1 Calore specifico in J/(kg·K)		
Acqua	4180	
Alcol etilico	2430	
Benzina	2100	
Olio d'oliva	1650	
Petrolio	2140	
Mercurio	138	
Ottone	376	
Acciaio-Ferro	480	
Ghisa	500	
Oro	134	
Argento	238	
Rame	390	
Alluminio	880	
Piombo	128	
Bronzo	380	

*O*La **capacità termica** *C* di un corpo è il **rapporto** tra l'**energia** ricevuta e la **variazione** di **temperatura**:

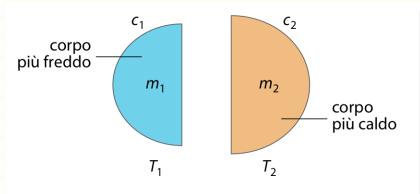
$$C = \frac{\Delta E}{\Delta T}$$

Nel **SI** la **capacità termica** si misura in **J/K**La capacità termica **C** è **proporzionale** alla massa **m**.
La costante di proporzionalità è il **calore specifico c**:

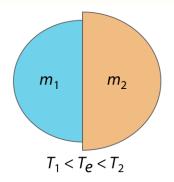
$$\frac{C}{m} = c$$

Il calore specifico *c* è caratteristico di ogni sostanza; nel **SI** si misura in **J/(kg-K)**

OLegge fondamentale della termologia


energia scambiata (J)
$$\Delta E = c \cdot m \cdot \Delta T$$
 variazione di temperatura (K)

L'energia scambiata dipende dalla sostanza (attraverso il calore specifico c) ed è direttamente proporzionale:


- alla massa della sostanza;
- alla variazione di temperatura ΔT .

Equilibrio termico: due corpi a temperatura T_1 e T_2 posti a contatto, scambiano energia e si portano a una temperatura di equilibrio T_{ρ}

L'energia è scambiata tra un corpo e l'altro sotto forma di calore

La sostanza fredda ha massa m_1 , temperatura T_1 e calore specifico c_1 ; la sostanza calda ha massa m_2 , temperatura T_2 e calore specifico c_2 .

Messe a contatto, le due sostanze raggiungono la stessa temperatura di equilibrio T_e compresa fra T_1 e T_2 .

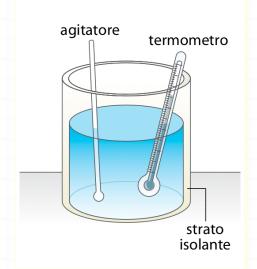
La **legge fondamentale della termologia** diventa: $Q = c \cdot m \cdot \Delta T$

$$Q = c \cdot m \cdot \Delta T$$

- Oll corpo caldo cede calore e si raffredda: $Q_{\text{ceduto}} = m_2 \cdot c_2 \cdot (T_e T_2)$
- Oll corpo freddo acquista calore e si riscalda: $Q_{\text{acquistato}} = m_1 \cdot c_1 \cdot (T_e T_1)$
- ${\it o}$ Poiché $T_1 < T_e < T_2$, $Q_{
 m ceduto}$ è negativo e $Q_{
 m acquistato}$ è positivo.
- OSe non c'è dispersione di calore, tenendo conto dei segni si ha:

$$Q_{\text{acquistato}} = -Q_{\text{ceduto}} \qquad m_1 \cdot c_1 \cdot (T_e - T_1) = -m_2 \cdot c_2 \cdot (T_e - T_2)$$

La temperatura di equilibrio T_e è:


$$T_e = \frac{(m_1 \cdot c_1 \cdot T_1 + m_2 \cdot c_2 \cdot T_2)}{m_1 \cdot c_1 + m_2 \cdot c_2}$$

Se $c_1 = c_2$ (stessa sostanza) T_e è:

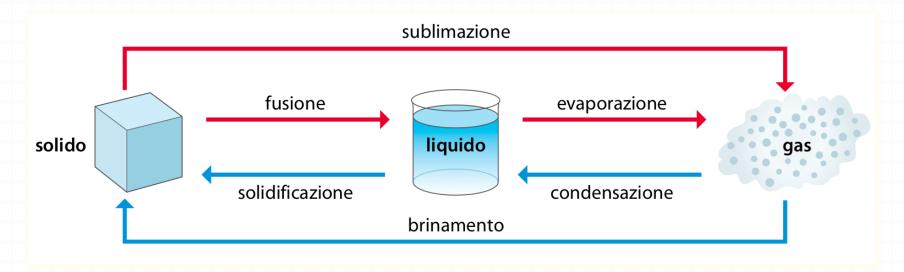
$$T_e = \frac{m_1 \cdot T_1 + m_2 \cdot T_2}{m_1 + m_2}$$

Misura di calore specifico con il calorimetro delle mescolanze.

Il calorimetro è formato da un recipiente che contiene acqua, un agitatore e un termometro. Le pareti del calorimetro sono rivestite di materiale isolante.

Nel calorimetro: acqua (massa m_1 , temperatura T_1) Si aggiunge un corpo di massa m_2 a temperatura T_2 : il

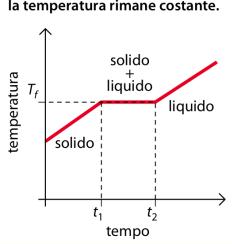
$$(m_1 + m_e) \cdot c_1 \cdot (T_e - T_1) = -m_2 \cdot c_2 \cdot (T_e - T_2)$$


 m_e : equivalente in acqua del calorimetro, tiene conto del calore assorbito dal calorimetro

sistema va in equilibrio a temperatura $T_{\rm e}$

Misurando T_e si può determinare il calore specifico sconosciuto c_2

Durante un cambiamento di stato la temperatura di una sostanza rimane costante; il cambiamento di stato avviene per sottrazione o cessione di calore


Cambiamento di stato: passaggio di una sostanza da uno stato di aggregazione a un altro

Durante un cambiamento di stato la temperatura resta costante

- ☐ Fusione: passaggio dallo stato solido allo stato liquido
- ☐ La **fusione** avviene per **assorbimento di calore**

Mentre un corpo fonde la temperatura rimane costante.

Il solido **assorbe calore**: la sua **temperatura sale** fino alla **temperatura di fusione** T_f - inizia il cambiamento di stato

Fusione: il solido continua ad assorbire calore, ma la temperatura resta costante al valore T_f

A fusione completata, se il corpo continua ad assorbire calore, la sua temperatura cresce

Se una massa m di sostanza solida si trova alla temperatura di fusione T_f la quantità di calore Q necessaria per farla fondere è direttamente proporzionale a m

calore (J)
$$Q = \lambda_f m$$
 calore latente di fusione $\left(\frac{J}{kg}\right)$

La costante di proporzionalità λ_f , caratteristica di ogni sostanza, è il calore latente di fusione, nel SI si misura in **J/kg**

ESEMPIO 1 Per fondere un pezzo di ghiaccio di 1,0 kg che si trova alla temperatura di 0 °C $(\lambda_f = 334\,000\,\text{J/kg})$, occorre la seguente quantità di calore:

$$Q = \lambda_f \cdot m = (334 \times 10^3 \text{ J/kg}) \times (1.0 \text{ kg}) = 3.34 \times 10^5 \text{ J}$$

Tabella 1 Temperatura di fusione e calore latente (a pressione normale)			
<i>T_f</i> (°C)	λ_f (kJ/kg)		
-259	59		
-210	26		
-219	14		
-114	105		
-39	12		
0	334		
327	25		
961	105		
	calore e norma T _f (°C) -259 -210 -219 -114 -39 0 327		

- □ Il cambiamento di stato **inverso** della fusione è la **solidificazione**: avviene alla **stessa temperatura della fusione**, con **cessione di calore** da parte del liquido
- □ Il **calore latente di solidificazione** è il calore ceduto dalla massa unitaria di liquido durante la solidificazione, ed è uguale al calore latente di fusione.

OEvaporazione: passaggio dallo stato liquido allo stato gassoso

OL'evaporazione avviene per assorbimento di calore

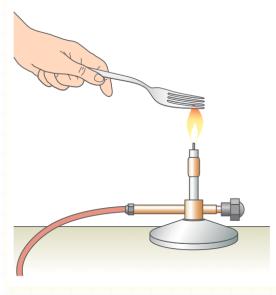
Tabella 2 Temperatura
di ebollizione e calore
latente di evaporazione
(a pressione normale)

(a pressione normale)			
Sostanza	<i>T_e</i> (°C)	λ_f (kJ/kg)	
Idrogeno	-253	452	
Azoto	-196	201	
Ossigeno	-183	213	
Alcol etilico	78	854	
Acqua	100	2250	
Mercurio	357	272	
Piombo	1750	871	
Argento	2193	2336	

Molti liquidi evaporano anche (in superficie) a temperatura ambiente

Nell'ebollizione il cambiamento di stato interessa tutto il volume di liquido e avviene a temperatura costante (temperatura di ebollizione) La temperatura di ebollizione dipende dalla pressione

Se una massa m di sostanza solida si trova alla temperatura di evaporazione T_e , la quantità di calore Q necessaria per farla evaporare è direttamente proporzionale a m:

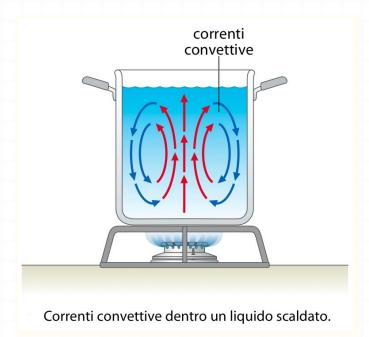

$$Q = \lambda_{\nu} \cdot m$$

 λ_{ν} , è il calore latente di evaporazione, nel SI si misura in J/kg

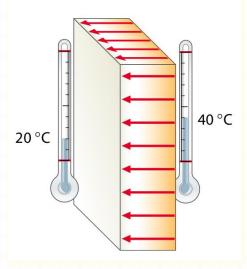
La **condensazione è** il cambiamento di stato **inverso** della evaporazione, e avviene alla **stessa temperatura**, con **cessione di calore** da parte del liquido (il calore latente di condensazione è uguale a quello di evaporazione)

Il calore si propaga da punti a temperatura più alta a punti a temperatura più bassa

La punta della forchetta viene scaldata sul fuoco; dopo un po' il calore si propaga fino al manico.



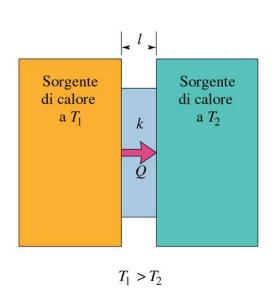
- □All'interno di un solido il calore si propaga per **conduzione**
- □La conduzione del calore è dovuta alla trasmissione di vibrazioni tra atomi vicini all'interno del solido.
- □Si ha **trasmissione di energia**all'interno del solido, ma **non** si ha **trasporto di materia**


All'interno di un **fluido** (liquido o gas) il calore si propaga soprattutto per **convezione**.

Il fluido, scaldandosi, varia la sua densità: il fluido più caldo tende a salire, e quello più freddo scende a prendere il suo posto

Si innescano delle correnti convettive che coinvolgono tutto il fluido: si ha **trasmissione di energia** nel fluido, e si ha anche **trasporto di materia**

Il calore passa dalla parete più calda a quella più fredda. La rapidità del passaggio dipende dalla differenza di temperatura, dallo spessore della parete e dal tipo di materiale.

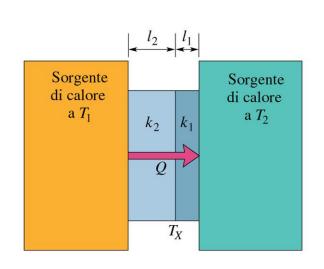

□ Legge di Fourier della conduzione

La quantità di calore che si propaga per conduzione in un tempo Δt attraverso una parete di area A e spessore d, ai due lati della quale è mantenuta una differenza di temperatura ΔT , è:

$$Q = k \cdot \frac{A \cdot \Delta T \cdot \Delta t}{d}$$

k: **coefficiente di conducibilità termica**, caratteristico del materiale. Nel SI il coefficiente di conducibilità termica si misura in W/(m⋅K)

La conduzione



Il calore viene trasferito da un serbatoio a temperatura T₁ a un corpo a temperatura T₂ attraverso una lastra di conduzione di spessore L

Il calore H trasmesso nell'unità di tempo è dato da

$$H = \frac{Q}{t} = kA \frac{T_1 - T_2}{L}$$

Resistenza termica alla conduzione

Se si è orientati a coibentare una casa o a mantenere fredda una bibita in lattina bisogna saper scegliere tra buoni conduttori di calore e cattivi conduttori.

La resistenza termica è definita come

R=L/k

Il calore viene trasferito attraverso una lastra composta da due diversi materiali di spessore differente e diversa conducibilità termica. La temperatura all'interfaccia è Tx

Calcolo della temperatura di interfaccia

$$H = \frac{k_2 A (T_1 - T_x)}{L_2} = \frac{k_1 A (T_x - T_2)}{L_1}$$

Risolvendo rispetto a Tx, si ottiene

$$\theta T_{x} = \frac{k_{1}L_{2}T_{2} + k_{2}L_{1}T_{1}}{k_{1}L_{2} + k_{2}L_{1}}$$

Quindi il calore trasmesso per unità di tempo è

$$H = \frac{A(T_1 - T_2)}{(L_1/k_1) + (L_2/k_2)}$$

- Le sostanze con un

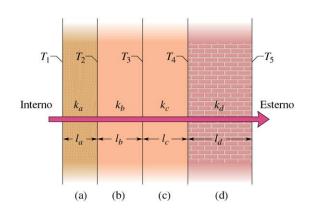
 coefficiente di conducibilità

 termica elevato, per esempio i

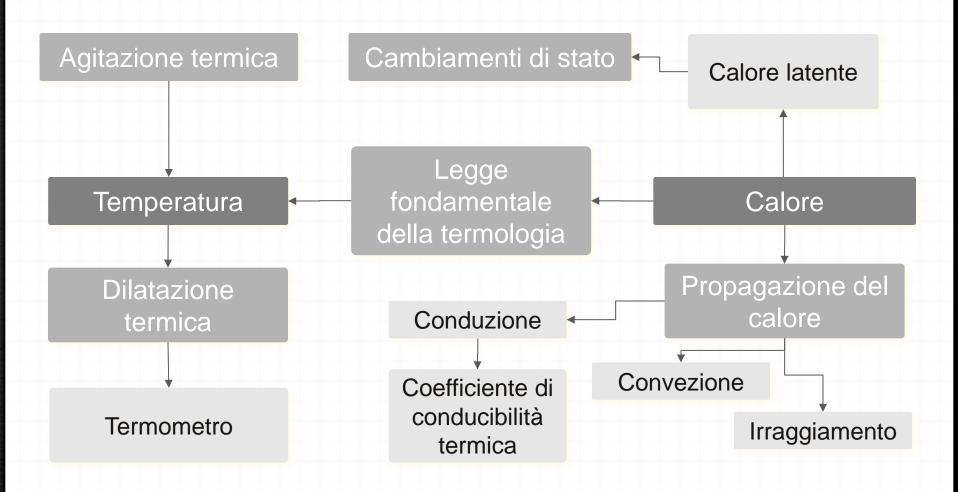
 metalli, sono buoni

 conduttori di calore.
- □Gli isolanti termici, per esempio i gas, o i materiali che inglobano aria nella loro struttura, hanno una bassa conducibilità termica

Tabella 1 Coefficiente di conducibilità termica di alcune sostanze in W/(m·K) a 20°C				
Argento	430	Gesso	1,3	
Rame	390	Laterizi	0,6	
Alluminio	235	Vetro	0,5 ÷ 0,9	
Zinco	116	Legno	0,1 ÷ 0,4	
Ferro	67	Gomma	0,15	
Bronzo	190	Sughero	0,05 ÷ 0,11	
Ottone	120	Cemento	0,4 ÷ 1,7	
Ghisa	60	Aria secca	0,025	
Acciaio	50	Lana di roccia	0,043	
Ghiaccio	2,1	Poliuretano esp	o. 0,024	


- Nella trasmissione per **irraggiamento**, il calore viene scambiato come **radiazione elettromagnetica**, che si propaga anche nel vuoto.
- □ Tutti i corpi **emettono radiazione elettromagnetica (visibile** per i corpi più caldi, **infrarossa** per quelli più freddi).
- □ La **potenza irraggiata** da un corpo di superficie A alla temperatura T (misurata in kelvin) è espressa dalla **legge di Stefan-Boltzmann**:

potenza irradiata =
$$\frac{Q}{\Delta t} = c \cdot A \cdot T^4$$


☐ La costante *c* dipende dal materiale che costituisce la superficie. Quando la radiazione elettromagnetica incide su un corpo, viene in parte **riflessa** e in parte **assorbita**, riscaldando il corpo stesso

Esercizio

Si ha una parete costituita da una tavola di pino bianco per uno spessore La e mattoni per uno spessore Ld(=2La) che racchiudono due strati di materiale non noto di spessore identico e uguale conducibilità termica. Note T1=25°C, T2=20°C e T5=-10°C si calcoli la temperatura all'interfaccia T4 e all'interfaccia T3

Calore e temperatura

