

Funzioni reali di due variabili reali

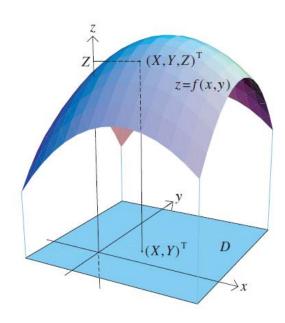
Corso di Matematica II
2014/2015
Corso di studi in Ingegneria meccanica

Definizione

DEFINIZIONE

Funzione reale di due variabili reali

Indichiamo con R^2 l'insieme di tutti i vettori bidimensionali. Dato un sottoinsieme $D \subseteq R^2$, una funzione $f: D \to R$ è una legge che assegna a ogni punto (x,y) dell'insieme D un unico valore $z \in R$ indicato con z = f(x,y)



In questo caso, x e y sono le variabili indipendenti e z e la variabile dipendente. Il dominio D e una regione del piano (x, y) e il grafico e una superficie dello spazio tridimensionale. A ciascun punto <math>(X,Y) di D con f(X,Y) = Z corrisponde un unico punto (X,Y,Z) sulla superficie.

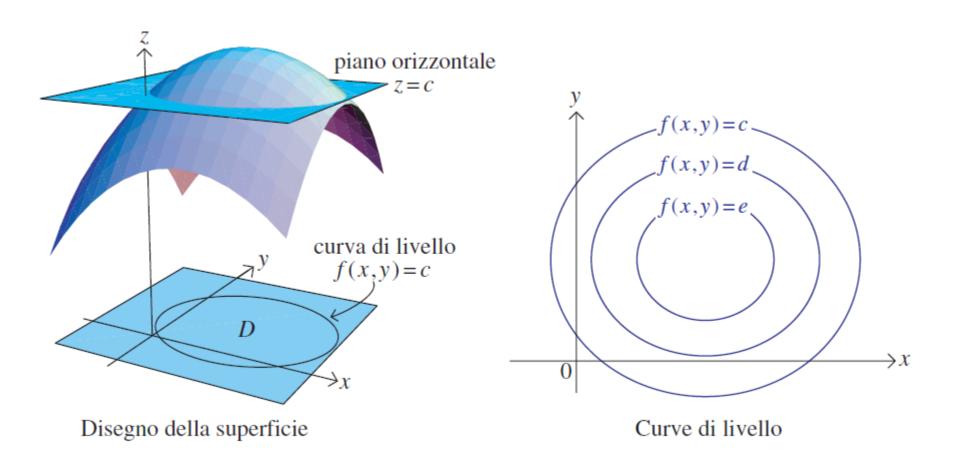
Curve di livello

Di solito la superficie non è facile da disegnare per cui talvolta si preferisce considerarla come se fosse la superficie di un terreno. È allora naturale rappresentare l'andamento del terreno disegnando una mappa di curve orizzontali a una quota fissata, chiamate curve di livello o contorni, lungo le quali il valore della funzione è costante.

Ciascuna di queste linee corrisponde a una sezione orizzontale che taglia la superficie. Anche le sezioni verticali aiutano a descrivere la superficie, mostrandone delle viste laterali. Il reticolo che compare nel grafico di una funzione generato da un calcolatore corrisponde a sezioni verticali che tagliano la superficie secondo due direzioni ortogonali.

Le linee di livello

Rappresentazione delle linee di livello



Dominio delle funzioni in due variabili

ESEMPIO

Consideriamo la funzione:

$$z = f(x; y) = \frac{3x + 2y - 5}{x^2 + 4}$$

Qual è il suo dominio?

Denominatore non nullo: $x^2 + 4 \neq 0$, condizione vera per ogni x e per ogni y

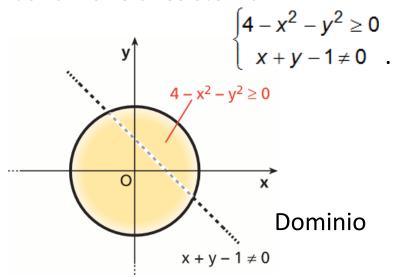
 \longrightarrow Dominio di $f: S = \mathbf{R} \times \mathbf{R}$.

ESEMPIO

Consideriamo la funzione:

$$z = \frac{\sqrt{4 - x^2 - y^2}}{x + y - 1}$$

Condizione di esistenza:



Dominio delle funzioni in due variabili

ESEMPIO

Determiniamo il dominio della

funzione:

$$z = \frac{\sqrt{y - x^2 + 4x}}{\sqrt{4x^2 + 9y^2 - 36} + 7}$$

Condizione di esistenza:

$$y - x^2 + 4x \ge 0$$
$$4x^2 + 9y^2 - 36 \ge 0.$$

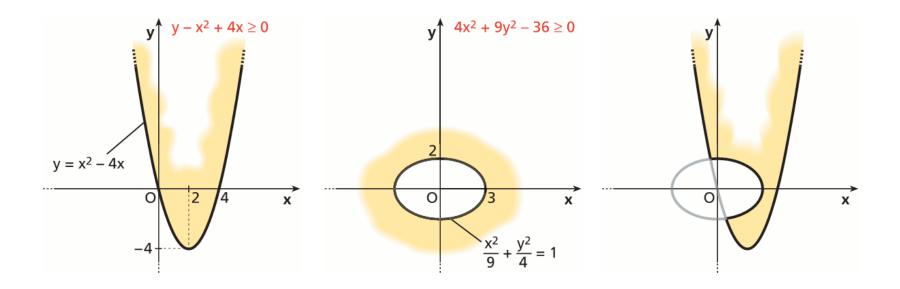
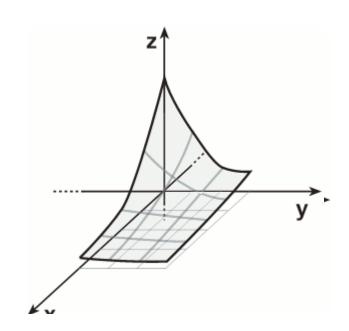


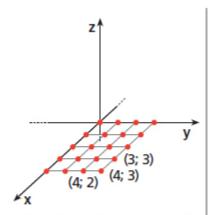
Grafico delle funzioni in due variabili

I grafici per punti

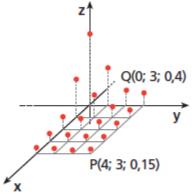
Grafico di z = f(x; y): si individua un reticolo all'interno della porzione di dominio che si vuole rappresentare;

si innalzano le quote di ciascun nodo; si congiungono con delle linee i punti ottenuti; i quadrilateri ottenuti forniscono una rappresentazione approssimativa della superficie curva z = f(x; y).

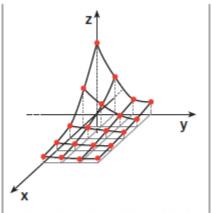




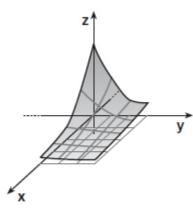
 a. Tracciamo i lati di un reticolo.



b. Innalziamo le quote da ciascun nodo.



c. Congiungiamo i punti ottenuti con delle linee.



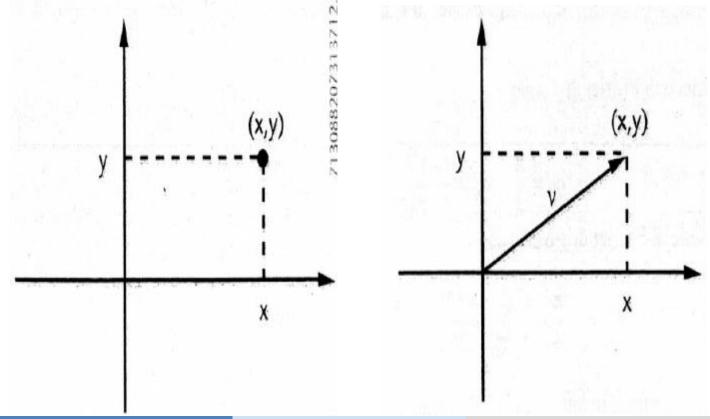
 d. Otteniamo la rappresentazione della superficie nello spazio.

Richiami sullo spazio vettoriale R^2

Indichiamo con il simbolo \mathbb{R}^2 l'insieme costituito dalle coppie rodinate di numeri reali, ovvero:

$$R^2 = \{(x, y) : x \in R, y \in R\}$$

Gli elementi o punti di \mathbb{R}^2 possono essere rappresentati come segue.



Richiami sullo spazio vettoriale R^2

E' utile definire la somma di due vettori v_1, v_2 di coordinate $v_1(x_1, y_1)$ e $v_2(x_2, y_2)$ nel modo seguente:

$$v_1 + v_2 = (x_1 + x_2, y_1 + y_2)$$

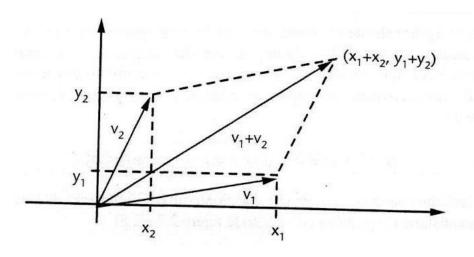
Analogamente si definisce la moltiplicazione di un vettore v per uno scalare λ nel modo seguente:

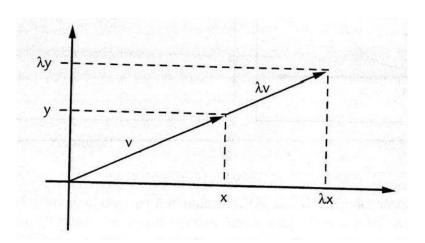
$$\lambda \cdot v = (\lambda x, \lambda y)$$

Con le operazioni di somma e di moltiplicazione per uno scalare l'insieme R^2 si può riguardare come uno spazio vettoriale. Il vettore nullo ha componenti (0,0), mentre l'opposto è il vettore -v=(-x,-y)

 $\forall v(x,y) \in \mathbb{R}^2$, si definisce modulo o norma di v la quantità

$$|(x,y)| = \sqrt{x^2 + y^2}$$





Richiami sullo spazio vettoriale R^2

Il prodotto scalare di due vettori v_1 e v_2 viene indicato col simbolo (v_1, v_2) ed è definito nel modo seguente:

$$(v_1, v_2) = x_1 x_2 + y_1 y_2$$

Disugualianza di Cauchy-Schwarz

Siano due vettori v_1 e v_2 di R^2 . Se indichiamo con $|v_1|$ e $|v_2|$ i moduli dei due vettori e con (v_1, v_2) il loro prodotto scalare, risulta:

$$|(v_1, v_2)| \le |v_1| \cdot |v_2|$$

Dimostrazione

Dati due vettori $v_1(x_1, y_1)$ e $v_2(x_2, y_2)$, $\forall t \in R$ si ha:

$$0 \le (x_1 + tx_2)^2 + (y_1 + ty_2)^2 = (x_1^2 + y_1^2) + 2t(x_1x_2 + y_1y_2) + t^2(x_2^2 + y_2^2)$$

Posto:

$$\alpha = x_2^2 + y_2^2 = |v_2|^2$$

$$\beta = x_1 x_2 + y_1 y_2 = (v_1, v_2)$$

$$\gamma = x_1^2 + y_1^2 = |v_1|^2$$

si avrà:

$$\alpha t^2 + 2\beta t + \gamma$$

Disuguaglianza di Cauchy-Schwarz

Dimostrazione

$$\alpha t^2 + 2\beta t + \gamma$$

Se $\alpha=0$ risulta $|v_2|=0$ cioè $v_2=0$ e, in tal caso, anche $(v_1,v_2)=0$ pertanto la disuguaglianza si riduce a una ovvia identità 0=0

Se $\alpha \neq 0$ la disuguaglianza scritta esprime il fatto che il polinomio di secondo grado rispetto a t è non negativo $\forall t \in R$. Ciò implica che il discrinante dell'equazione associata verifica $\Delta \leq 0$.

Pertanto:

$$\frac{\Delta}{4} = (v_1, v_2)^2 - |v_1|^2 \cdot |v_2|^2 \le 0$$

che corrisponde alla tesi

Nozioni di topologia in \mathbb{R}^2

DEFINIZIONE

Intorno circolare

Sia $P_0(x_0; y_0)$ un punto fissato di R^2 . Si chiama intorno circolare del punto $P_0(x_0; y_0)$ del piano l'insieme dei punti del piano le cui coordinate (x; y) soddisfano la disequazione

$$(x - x_0)^2 + (y - y_0)^2 < \delta^2$$

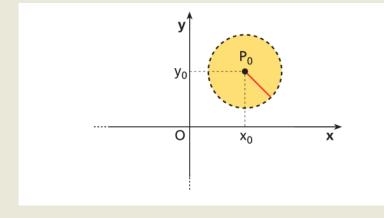
con δ numero reale positivo,

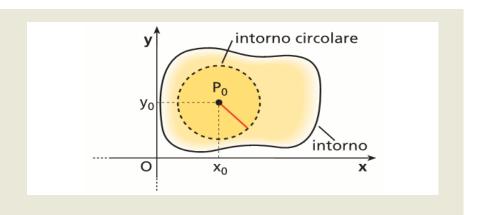
ovvero un cerchio aperto di centro $(x_0; y_0)$ e raggio δ

$$I_{\delta} = \left\{ (x, y) \in R^2 : \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \right\}$$

Intorno

Si chiama intorno di un punto P_0 del piano ogni sottoinsieme di $\mathbf{R} \times \mathbf{R}$ che contiene un intorno circolare di centro P_0 .





Nozioni di topologia in R^2

ESEMPIO

Consideriamo l'insieme

$$I = \{ (x; y) \mid (x; y) \in \mathbb{R} \times \mathbb{R} \land \\ \land x^2 + y^2 - 6x - 4y + 12 < 0 \}.$$

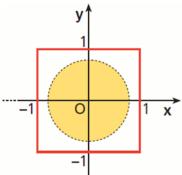
$$x^2 + y^2 - 6x - 4y + 12 = 0$$

è l'equazione di una circonferenza centrata
in P_0 (3;2) con raggio $r = 1$.

I è un intorno circolare di raggio 1 del punto P_0 (3;2).

ESEMPIO

Consideriamo l'insieme *I* rappresentato nella figura.



$$-1 \le x \le 1 \land -1 \le y \le 1$$

I contiene in intorno circolare di O (0;0) di raggio 0,75.

→ / è un intorno di O (0;0).
O è un **punto di accumulazione** per /.

DEFINIZIONE

Punto di accumulazione

Dato un insieme I di punti di un piano, un punto P_0 si dice di accumulazione per I se, comunque fissato un intorno circolare di P_0 , tale intorno contiene infiniti punti di I.

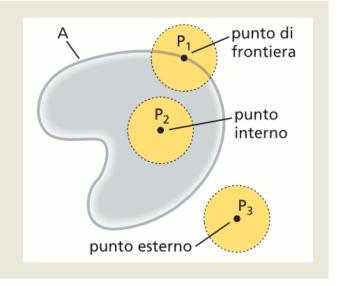
Nozioni di topologia in \mathbb{R}^2

DEFINIZIONE

Punti interni, esterni, di frontiera

Dato un insieme A di punti del piano, un punto P è:

- **di frontiera** per *A*, se ogni intorno di *P* ha punti di *A* e punti che non appartengono ad *A*;
- **interno** ad *A*, se *P* appartiene ad *A* e se esiste un intorno di *P* i cui punti sono soltanto punti di *A*;
- **esterno** ad *A*, se esiste un intorno di *P* che non ha punti appartenenti ad *A*.



ESEMPIO

Dato un cerchio:

sono esterni i punti che non appartengono al cerchio;

sono **interni** i punti del cerchio che non appartengono alla circonferenza;

la circonferenza è la frontiera.

DEFINIZIONE

Insieme aperto, insieme chiuso

Un insieme di punti del piano si dice:

- aperto, se ogni suo punto è interno;
- chiuso, se il suo complementare è aperto.

ESEMPIO

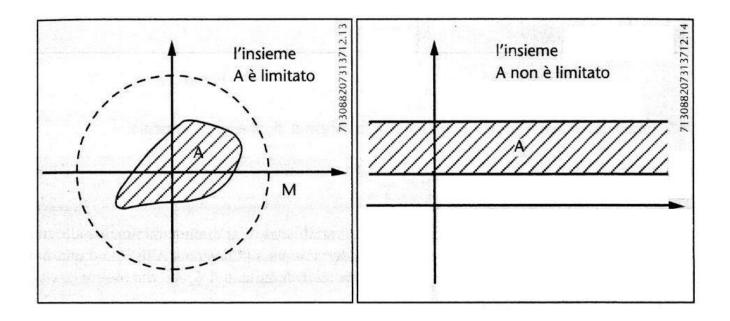
Un poligono è un insieme chiuso.

Un poligono privato dei lati è un insieme aperto.

Nozioni di topologia in R^2

Un insieme $A \subseteq \mathbb{R}^2$ si dice limitato se è contenuto in un intorno circolare dell'origine $I_M(0)$ cioè se esiste M>0 t.c.

$$|(x,y)| = \sqrt{x^2 + y^2} \le M$$

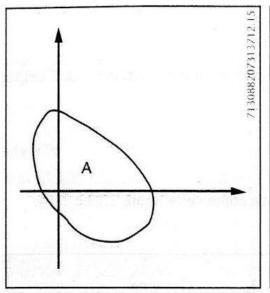


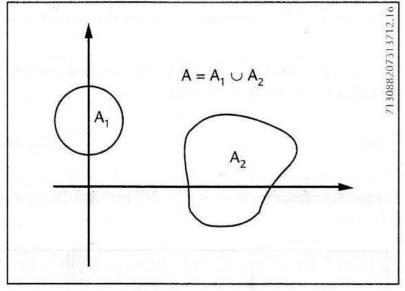
Nozioni di topologia in R^2

Un insieme $A \subseteq \mathbb{R}^2$ si dice connesso se non esistono due aperti disgiunti non vuoti di \mathbb{R}^2 la cui unione sia l'insieme A.

In formule ciò significa che non esistono due aperti $A_1,A_2\subseteq R^2$ tali che $\begin{cases} A_1\neq 0,A_2\neq 0\\ A_1\cap A_2=0,A_1\cup A_2=A \end{cases}$

Un dominio si dice connesso se è la chiusura di un aperto connesso





DEFINIZIONE

Limite finito per P tendente a P_0

Data una funzione z = f(x; y), di dominio D, e un punto $P_0(x_0; y_0)$ di accumulazione per D,

si dice che la funzione ammette limite finito I per P(x;y) tendente a $P_0(x_0;y_0)$ e si scrive oppure

$$\lim_{P \to P_0} f(x; y) = l \qquad \lim_{x \to x_0} f(x; y) = l$$

se, fissato arbitrariamente un numero positivo e , si può determinare un intorno circolare di P_0 , di raggio d dipendente da e, per ogni punto del quale, escluso P_0 , sia

$$|f(x;y)-l|<\varepsilon$$

ESEMPIO

Verifichiamo che:

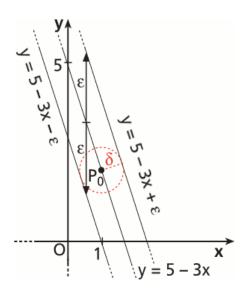
$$\lim_{\substack{x \to 1 \\ y \to 2}} (3x + y) = 5$$

Cerchiamo, per ogni e , un intorno circolare di (1;2) in cui

$$| 3x + y | < e$$
.

Ossia:

$$5 - e < 3x + y < 5 + e$$
,
 $5 - 3x - e < y < 5 - 3x + e$.



La disequazione rappresenta lo spazio compreso tra le due rette esterne,

che comprende un intorno circolare di (1;2).

DEFINIZIONE

Limite infinito per P tendente a P_0

Data una funzione z = f(x; y), di dominio D, e un punto $P_0(x_0; y_0)$ di accumulazione per D,

si dice che la funzione ammette limite infinito per P(x; y) tendente a $P_0(x_0; y_0)$ e si scrive

$$\lim_{P \to P_0} f(x; y) = \infty \text{ oppure } \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x; y) = \infty$$

se, fissato arbitrariamente un numero positivo M, si può determinare un intorno circolare di P_0 , di raggio d dipendente da M, per ogni punto del quale, escluso P_0 , sia $\mid f(x; y) \mid > M$.

DEFINIZIONE

Limite finito per P tendente a infinito

Data una funzione z = f(x; y), di dominio D illimitato,

si dice che la funzione ammette limite finito I per P(x; y) tendente a e si scrive

$$\lim_{P \to \infty} f(x; y) = l \quad \text{oppure} \quad \lim_{\substack{x \to \infty \\ y \to \infty}} f(x; y) = l$$

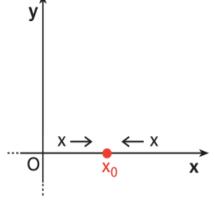
se, fissato arbitrariamente un numero positivo e , si può determinare un intorno circolare di P_0 , di raggio d dipendente da e, tale che per tutti i punti di D esterni ad esso risulti

$$|f(x;y)-l|<\varepsilon$$

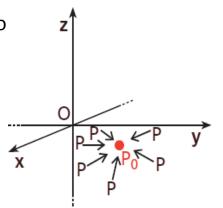
Limite destro e limite sinistro?

Nell'asse reale, un punto x_0 divide i propri intorni in due parti.

Si possono definire i limiti destro e sinistro di una funzione intorno a x_0 .



Nel piano, il punto $P_0(x_0; y_0)$ non divide l'intorno. I limiti destro e sinistro non hanno senso.



DEFINIZIONE

Funzione continua

Una funzione $z=f\left(x;y\right)$ definita in un insieme D si dice continua in un punto $P_0(x_0;y_0)$, appartenente a D e di accumulazione per D stesso,

se esiste finito il
$$\lim_{P\to P_0} f(x;y)$$
 e se tale

limite è uguale al valore assunto dalla funzione in P_0 .

Scriviamo:
$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x; y) = f(x_0; y_0)$$

ESEMPIO

$$z = \frac{x + y}{x - y}$$
è continua per $x \neq y$

Consideriamo la funzione

$$f(x,y) = \frac{x^2}{\sqrt{x^2 + y^2}}$$

Tale funzione è definita nell'aperto A costituito da R^2 privato dell'origine, cioè $A = R^2 - \{(0,0)\}.$

Verifichiamo che

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}} = 0$$

Infatti, dalle disuguaglianze:

$$0 \le \frac{x^2}{\sqrt{x^2 + y^2}} \le \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2}$$

cioè, $\forall \varepsilon > 0$:

$$0 \le f(x, y) < \varepsilon$$

$$\forall (x,y) \neq (0,0) | \sqrt{x^2 + y^2} < \varepsilon$$

Alcuni teoremi sui limiti

Teorema di Weierstrass

Sia C un insieme chiuso e limitato di \mathbb{R}^2 e sia f(x,y) una funzione continua definita su C. Allora f assume massimo e minimo (assoluti) su C cioè esistono due punti (x_1,y_1) e (x_2,y_2) di C tali che

$$f(x_1, y_1) \le f(x, y) \le f(x_2, y_2)$$

Teorema di Cantor

Sia C un insieme chiuso e limitato di R^2 e sia f(x,y) una funzione continua definita su C. Allora f è uniformemente continua su C; cioè $\forall \varepsilon > 0, \exists \delta > 0$ tale che

$$|f(x_1, y_1) - f(x_2, y_2)| < \varepsilon$$

$$\forall (x_1, y_1), (x_2, y_2) \in C \text{ con } |(x_1, y_1) - (x_2, y_2)| < \delta \text{ cioè}$$

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} < \delta$$

Teorema di esistenza dei valori intermedi

Sia D un dominio connesso e limitato di \mathbb{R}^2 e f(x,y) una funzione continua su D. Allora f assume tutti i valori compresi fra il minimo e il massimo di f su D

Ricerca del dominio

ESERCIZIO GUIDA

Dobbiamo imporre che siano contemporaneamente verificate le seguenti condizioni:

- il denominatore diverso da 0;
- il radicando al numeratore maggiore o uguale a 0;
- l'argomento del logaritmo maggiore di 0;
- il radicando al denominatore maggiore oppure uguale a 0.

Otteniamo il seguente sistema:

$$\begin{cases} \sqrt{x^2 - y^2 - 1} \neq 0 & \to x^2 - y^2 - 1 \neq 0 \\ \ln(x^2 + y^2 - 15) \ge 0 \\ x^2 + y^2 - 15 > 0 \\ x^2 - y^2 - 1 \ge 0 \end{cases}$$

Considerando la prima e l'ultima condizione contemporaneamente e ricordando che ln $a \ge 0$ per $a \ge 1$, il sistema si riduce a:

$$\begin{cases} x^2 - y^2 - 1 > 0 \\ x^2 + y^2 - 15 \ge 1 \\ x^2 + y^2 - 15 > 0 \end{cases}$$

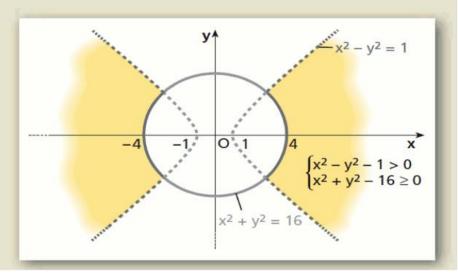
Determiniamo il dominio della funzione:

$$z = \frac{\sqrt{\ln(x^2 + y^2 - 15)} + 7x^2 - 6x}{\sqrt{x^2 - y^2 - 1}}.$$

Osserviamo che la seconda e la terza disequazione sono entrambe vere soltanto se il primo membro è maggiore o uguale a 1:

$$\begin{cases} x^2 - y^2 - 1 > 0 \\ x^2 + y^2 - 15 \ge 1 \end{cases} \rightarrow \begin{cases} x^2 - y^2 - 1 > 0 \\ x^2 + y^2 - 16 \ge 0 \end{cases}$$

Il dominio della funzione è rappresentato da tutti i punti del piano della parte colorata della figura.



Rappresentazione delle linee di livello

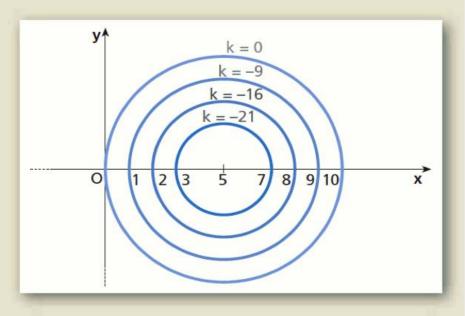
ESERCIZIO GUIDA

Studiamo l'andamento delle linee di livello della funzione $z=x^2+y^2-10x$ e rappresentiamone alcune.

Sezioniamo la superficie con piani paralleli al piano Oxy, cioè con piani di equazione z=k, risolvendo il sistema:

$$\begin{cases} z = x^2 + y^2 - 10x \\ z = k \end{cases}$$

Le sezioni ottenute hanno equazioni $k = x^2 + y^2 - 10x$, una per ogni valore di k. Le linee di livello, al variare di k, sono le circonferenze $x^2 + y^2 - 10x - k = 0$ di centro C(5; 0) e raggio $r = \sqrt{25 + k}$. Se, per esempio, sezioniamo con il piano z = -16, otteniamo la circonferenza $x^2 + y^2 - 10x + 16 = 0$, che è di centro C(5; 0) e raggio $r = \sqrt{25 - 16} = 3$. In figura abbiamo rappresentato alcune linee di livello e i corrispondenti valori di k.



Dalla relazione $r = \sqrt{25 + k}$ si ricava $25 + k \ge 0$, quindi $k \ge -25$. Per k = -25 si ha il punto (5; 0). Le linee di livello non esistono se k < -25.

Verifica di un limite

ESERCIZIO GUIDA

Verifichiamo, applicando la definizione:

$$\lim_{\substack{x-1\\y-1}} \frac{x^3 + xy^2}{x} = 2.$$

Raccogliamo x a fattor comune e dividiamo per $x \neq 0$:

$$\frac{x^3 + xy^2}{x} = \frac{x(x^2 + y^2)}{x} = x^2 + y^2.$$

Dobbiamo mostrare che esiste un intorno circolare di $P_0(1; 1)$ tale che:

$$|x^2+y^2-2|<\varepsilon.$$

Sviluppiamo i calcoli:

$$|x^2 + y^2 - 2| < \varepsilon \rightarrow -\varepsilon < x^2 + y^2 - 2 < \varepsilon \rightarrow$$
$$\rightarrow 2 - \varepsilon < x^2 + y^2 < 2 + \varepsilon.$$

La doppia disuguaglianza è verificata in tutta la parte di piano compresa nella corona circolare delimitata dalle circonferenze $x^2 + y^2 = 2 - \varepsilon$ e $x^2 + y^2 = 2 + \varepsilon$, e quindi in qualsiasi intorno circolare di P_0 di raggio minore o uguale alla distanza di P_0 da ciascuna circonferenza (figura b).

