

SUCCESSIONI E SERIE NUMERICHE

Prof. Roberto Capone A.A. 2016/17 Corso di Studi in Ingegneria Chimica

Le successioni: intro

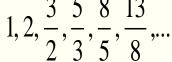
Si consideri la seguente sequenza di numeri:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,... detti di Fibonacci.

Essa rappresenta il numero di coppie di conigli presenti nei primi 12 mesi in un allevamento!

Si consideri la sequenza ottenuta dividendo ogni elemento per il precedente:

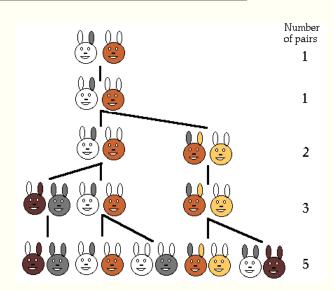
$$1, 2, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}, \dots$$



ovvero: 1, 2, 1.5, 1., 1.6, 1.625,...

I valori ottenuti si avvicinano alla sezione aurea:

$$\frac{1+\sqrt{5}}{2} = 1.61803...$$



Le successioni: formalizzazione

Definizione

Una successione è una funzione che associa ad ogni elemento di N un numero reale, è cioè una funzione reale definita su N:

$$f: \mathbb{N} \to \mathbb{R}$$
 $f(n) = a_n$ $n \mapsto a_n$

Si denota con

$$\{a_n\}_{n\in\mathbb{N}}$$
 $\{a_n\}$ a_n $n\mapsto a_n$

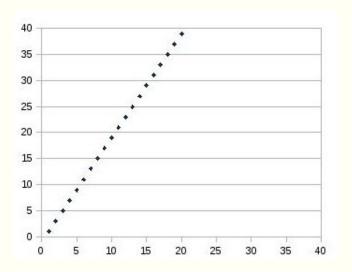
Spesso le successioni sono definite da un certo intero n_0 in poi, cioè il loro dominio è del tipo $\{n \in N | n \ge n_0\}$.

In tal caso, si scrive:

$$\{a_n\}_{n\geq n_0}$$

Successioni: rappresentazione grafica

Anche le successioni possono essere rappresentate sul piano cartesiano, sull'asse delle ascisse vengono riportati i valori di n, su quella delle ordinate invece gli a_n . Il grafico è quindi costituito da una serie di punti isolati; in figura è riportato l'esempio della successione naturale dei numeri dispari



Le successioni: esempi

Esempio 1.

• Si consideri la successione: $n \rightarrow a_n = \frac{1}{n}$

al crescere di n la frazione, che assume valori positivi, si avvicina sempre di più al numero 0.

Esempio 2

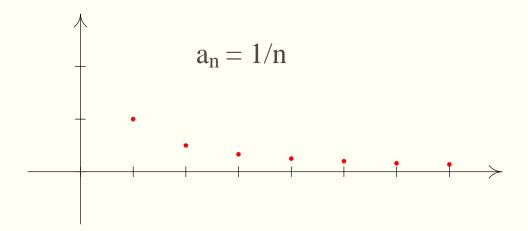
• Si consideri la successione: $n \rightarrow a_n = 10^n$

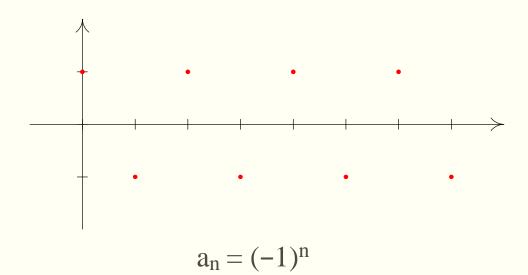
Al crescere di n la potenza assume valori sempre più grandi

Esempio 3

• Si consideri la successione : $n \rightarrow a_n = (-1)^n$

Al variare di n i valori sono alternativamente +1 e -1.





Le successioni

I tre esempi precedenti esibiscono i tre diversi comportamenti di una successione: convergente, divergente ed oscillante.

Studiare una successione equivale ad individuarne il comportamento al crescere di n ovvero al tendere di n verso ∞

Successioni numeriche: limitatezza

Definizione

Una successione $\{a_n\}$ si dice

- limitata inferiormente se esiste $m \in R \mid a_n \ge m$, $\forall n \in N$;
- limitata superiormente se esiste M∈ $R \mid a_n \leq M$, $\forall n \in N$;
- limitata se esistono m, $M \in R \mid m \le a_n \le M$, $\forall n \in N$.

L'operazione di limite consente di studiare il comportamento dei numeri $\{a_n\}$ quando n diventa sempre più grande.

Definizione

Una successione $\{a_n\}$ si dice che possiede definitivamente una proprietà se esiste un $N \in \mathbb{N}$ tale che a_n soddisfa quella proprietà $\forall n \geq N$

Successioni convergenti

Definizione

Una successione $\{a_n\}$ si dice convergente se esiste un numero reale $l\in R$ con questa proprietà: qualunque sia $\varepsilon>0$ risulta definitivamente

$$|a_n - l| < \varepsilon$$

In altre parole:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} | |a_n - l| < \varepsilon, \forall n \ge N.$$

Definizione

Sia $\{a_n\}$ una successione convergente. Il numero reale I che compare nella definizione precedente si chiama limite della successione $\{a_n\}$.

Si scrive

$$\lim_{n\to\infty}a_n=l$$

oppure $a_n \to l$ per $n \to \infty$

Successioni convergenti

Si noti che dalle proprietà del valore assoluto, la disuguaglianza $|a_n-l|< \varepsilon$ equivale a

$$l - \varepsilon < a_n < l + \varepsilon$$

Dunque la condizione di convergenza significa che, fissata una striscia $[l-\varepsilon,l+\varepsilon]$ comunque stretta, da un certo indice in poi i punti della successione non escono più da questa striscia.

Da questa osservazione risulta che:

Ogni successione convergente è limitata.

Teorema di unicità del limite

Una successione convergente non può avere due limiti distinti

Successioni divergenti

Definizione

Sia $\{a_n\}$ una successione.

Si dice che $\{a_n\}$ diverge a $+\infty$ se $\forall M>0$ si ha $a_n>M$ definitivamente e si scrive

$$\lim_{n\to+\infty}a_n=+\infty$$

Si dice che $\{a_n\}$ diverge a $-\infty$ se $\forall M>0$ si ha $a_n<-M$ definitivamente e si scrive

$$\lim_{n\to+\infty}a_n=-\infty$$

Esempi

Insiemi non limitati

Definizione

Sia $E \subseteq \mathbb{R}$

- \square Se E non è limitato superiormente si dice che $supE = +\infty$
- \Box Se E non è limitato inferiormente si dice che inf $E=-\infty$

Infiniti e infinitesimi

Definizione

Una successione si dice infinitesima se

$$\lim_{n\to+\infty}a_n=0$$

Una successione si dice infinita se

$$\lim_{n\to+\infty}a_n=\pm\infty$$

Le successioni: monotonia

Successioni che presentano una regolarità nell'evoluzione della serie di termini, ovvero il successivo è sempre maggiore (minore) del precedente oppure uguale, vengono dette monotone.

DefinizioneUna successione $\{a_n\}$ si dice □ monotona crescente se $a_n \le a_{n+1}$, $\forall n \in N$; □ strettamente crescente se $a_n < a_{n+1}$, $\forall n \in N$; □ monotona decrescente se $a_n \ge a_{n+1}$, $\forall n \in N$; □ strettamente decrescente se $a_n > a_{n+1}$, $\forall n \in N$;

Esempi

Teorema sul limite delle successioni monotone

Sia $\{a_n\}$ una successione monotona.

Se $\{a_n\}$ è monotona crescente e superiormente limitata, allora $\{a_n\}$ è convergente e

$$\lim_{n\to\infty} a_n = \sup\{a_n | n \in N\}$$

Se $\{a_n\}$ è monotona decrescente e inferiormente limitata, allora $\{a_n\}$ è convergente e

$$\lim_{n\to\infty} a_n = \inf\{a_n | n \in N\}$$

Esempi di successioni crescenti e decrescenti sono i seguenti:

- \Box La successione $a_n=n^2$ è una funzione strettamente crescente
- \square La successione $a_n = 1/n$ è strettamente decrescente.

Successioni: operazioni coi limiti

$$\lim_{n \to +\infty} (a_n \pm b_n) = \lim_{n \to +\infty} a_n \pm \lim_{n \to +\infty} b_n$$

$$\lim_{n \to +\infty} (a_n \cdot b_n) = \lim_{n \to +\infty} a_n \cdot \lim_{n \to +\infty} b_n$$

$$\lim_{n \to +\infty} \left(\frac{a_n}{b_n} \right) = \frac{\lim_{n \to +\infty} a_n}{\lim_{n \to +\infty} b_n}$$

$$\lim_{n \to +\infty} a_n^{b_n} = \lim_{n \to +\infty} (a_n)_{n \to +\infty}^{\lim b_n}$$

Successioni: polinomi

Si consideri la successione il cui termine generico è rappresentato da un polinomio di grado h in n:

■ Esempio 4:
$$n \rightarrow a_n = \alpha_0 n^h + \alpha_1 n^{h-1} + ... + \alpha_h$$

Raccogliendo la potenza di grado più elevato in n si ha:

 $n \rightarrow +\infty$

$$n \rightarrow a_n = 2n^2 - 5n - 1$$

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} n^2 (2 - \frac{5}{n} - \frac{1}{n^2}) = +\infty \cdot (2 - 0 - 0) = +\infty$$

$$\lim a_n = sign(\alpha_0) \infty$$

■ In generale si ha:

Successioni: rapporto tra due polinomi

• Un successione nella quale il termine generico è dato dal rapporto di due polinomi assume l'espressione:

$$n \to a_n = \frac{\alpha_0 n^h + \alpha_1 n^{h-1} + \dots + \alpha_h}{\beta_0 n^k + \beta_1 n^{k-1} + \dots + \beta_k}$$

$$n \to a_n = \frac{n^4 + 2}{-n^2 + n + 1}$$

■ A) h>k

$$n \to a_n = \frac{n^2 + 2}{-n^2 + n + 1}$$

■ B) h=k

$$n \to a_n = \frac{n^2 + 2}{-n^4 + n + 1}$$

■ C) h<k

Rapporto tra polinomi in breve

Concludendo:

- •A) se h>k la successione è divergente a $sign(\frac{\alpha_0}{\beta_0})\infty$
- B) se h=k la successione è convergente a $\frac{\alpha_0}{\beta_0}$
- C) se h<k la successione è convergente a 0.

Un'altra forma indeterminata

Per quanto riguarda la successione il cui termine generico ha la forma:

$$n \to a_n = \left(\frac{\alpha_0 n^h + \alpha_1 n^{h-1} + \dots + \alpha_h}{\beta_0 n^k + \beta_1 n^{k-1} + \dots + \beta_k}\right)^{\gamma_0 n^p + \gamma_1 n^{p-1} + \dots + \gamma_p}$$

 \blacksquare si presenta una situazione difficile solo se la base della potenza tende ad 1 e l'esponente tende all' ∞ , perché si genera la forma 1^∞ indeterminata

Il numero di Nepero

Teorema

La successione definita da

$$a_n = \left(1 + \frac{1}{n}\right)^n, \text{con } n \ge 1$$

è convergente

Si prova che $\{a_n\}$ è strettamente crescente e limitata $(2 \le a_n \le 4)$. Si scrive

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Il numero di Nepero e è irrazionale e la sua rappresentazione decimale inizia così: 2.7182818284

Esempio

Si consideri la successione

■ Il calcolo del limite porta a:

$$n \to a_n = \left(1 + \frac{1}{2n^2 - 3}\right)^{n^2 + n}$$

$$\lim_{n \to +\infty} a_n = e^{\lim_{n \to +\infty} \frac{n^2 + n}{2n^2 - 3}} = e^{\frac{1}{2}} = \sqrt{e}$$

La successione geometrica (di ragione q)

E' la successione $\{q^n\}$, per un fissato $q \in R$

Si ha:

$$\lim_{n \to \infty} q^n = \begin{cases} +\infty & se \ q > 1 \\ 1 & se \ q = 1 \\ 0 & se \ |q| < 1 \\ non \ esiste & se \ q \le -1 \end{cases}$$

Se q > 1, $\{q^n\}$ è monotona crescente, illimitata superiormente.

Se $q = 1, \{q^n\}$ è costante.

Se 0 < q < 1, $\{q^n\}$ è monotona decrescente.

Se q < 1, $\{q^n\}$ non è monotona

Esempi

$$n \to a_n = -15 \cdot \left(\frac{1}{9}\right)^n \qquad \lim_{n \to \infty} a_n = 0$$

$$n \to a_n = 5^n \qquad \lim_{n \to \infty} a_n = \infty$$

$$n \to a_n = (-2)^n \qquad \lim_{n \to \infty} a_n = ???$$

Limiti e ordinamento

Teorema di Permanenza del segno (prima forma)

- \square Se $a_n \to a$ e a>0 allora $a_n>0$ definitivamente
- \square Se $a_n \to a$ e a < 0 allora $a_n < 0 \ definitivamente$

Teorema di permanenza del segno (seconda forma)

 \square Se $a_n \to a$ e $a_n \ge 0$ definitivamente allora

$$a \ge 0$$

 \square Se $a_n o a$, $b_n o b$ e $a_n \ge b_n$ definitivamente allora a > b

Teorema del confronto

Se $a_n \leq b_n \leq c_n$ definitivamente ed esiste $l \in R$ tale che $a_n \to l$, $c_n \to l$ allora anche

$$b_n \to l$$

Legame tra limiti di funzioni e limiti di successioni

Teorema ponte

Sia f una funzione reale definita nel sottoinsieme X di R, regolare nel punto $x_0 \in R$ di accumulazione per X e sia $\{x_n\}$ una successione di punti di $X - \{x_0\}$ tale che

$$\lim_{n\to\infty}x_n=x_0.$$

Allora la successione di numeri reali $f(x_n)_{n\in\mathbb{N}}$ composta per mezzo di f e di $(x_n)_{n\in\mathbb{N}}$ è anch'essa regolare e ha lo stesso limite di f. Più schematicamente:

$$\lim_{\substack{x \to x_0 \\ \lim_{n \to \infty} x_n = x_0}} f(x) = l$$

Vale anche il viceversa:

Sia f una funzione reale definita nel sottoinsieme X si R e sia $x_0 \in R$ di accumulazione per X. Allora se, per ogni successione $(x_n)_{n \in N}$ di punti di $X - \{x_0\}$ che abbia x_0 come limite, la successione $f(x_n)_{n \in N}$ è regolare e ha lo stesso limite I, la funzione f è regolare in x_0 e ha limite I

Serie numeriche

Definizione

Considerata la successione di numeri reali $a_1, a_2, ..., a_n$ in breve $(a_n)_{n \in \mathbb{N}}$ si definisce serie numerica o, semplicemente serie, la sommatoria degli infiniti termini $a_1 + a_2 + \cdots + a_n$ che può essere scritta nella forma compatta

$$\sum_{n=1}^{\infty} a_n$$

Se si considera la successione

$$S_1 = a_1;$$
 $S_2 = a_1 + a_2;$
 $S_3 = a_1 + a_2 + a_3;$
.....
 $S_n = a_1 + a_2 + a_3 + \dots + a_n;$
....

Abbiamo costruito una nuova successione $(S_n)_{n\in\mathbb{N}}$ il cui termine generale S_n prende il nome di somma parziale n-esima. Studiando il limite di tale somma si possono verificare tre casi

Serie numeriche

La serie converge ed ha somma S

$$\lim_{n\to\infty} S_n = S$$

La serie diverge (positivamente o negativamente)

$$\lim_{n\to\infty} S_n = \pm \infty$$

La serie si dice indeterminata o oscillante

$$\lim_{n\to\infty} S_n = non \ esiste$$

Criteri di convergenza

Teorema

Condizione necessaria affinché la serie $\sum_{n=1}^{\infty} a_n$ converga è che $\lim_{n \to \infty} a_n = 0$

Si osservi che la condizione risulta solo necessaria ma non sufficiente. Ciò vuol dire che ci permette di stabilire se una serie diverge ma non se essa converge

Criterio di convergenza di Cauchy

Condizione necessaria e sufficiente affinché la serie $\sum_{n=1}^{\infty} a_n$ sia convergente è che

$$\forall \varepsilon > 0, \exists n_{\varepsilon} : \forall n > n_{\varepsilon}, \forall p \geq 1, \left| a_{n+1} + a_{n+2} + \dots + a_{n+p} \right| < \varepsilon$$

Serie geometrica

Come caso particolare interessante studiamo la serie geometrica

$$\sum_{n=0}^{\infty} \rho^n = 1 + \rho + \rho^2 + \dots + \rho^n + \dots$$

di ragione $\rho \in R$.

La somma parziale ennesima è:

$$S_n = \frac{1 - \rho^n}{1 - \rho}$$

Per determinare il carattere della serie basta passare al limite

$$\lim_{n} \frac{1 - \rho^n}{1 - \rho}$$

Si distinguono tre casi:

$$\lim_{n} \frac{1-\rho^{n}}{1-\rho} = \begin{cases} \frac{1}{1-\rho}, se \mid \rho \mid < 1, la \ serie \ converge \\ +\infty, se \ \rho \geq 1, \quad la \ serie \ diverge \\ non \ esiste, se \ \rho \leq -1, la \ serie \ e \ inderterminata \end{cases}$$

Serie a termini positivi

Una serie è detta a termini positivi se tutti i suoi termini sono positivi (o, talvolta, non negativi). Una serie a termini positivi o converge o diverge positivamente ma non può mai essere indeterminata. Per tali serie valgono i seguenti criteri di convergenza

Primo criterio del confronto

Se una serie è convergente, allora ogni sua minorante è convergente. Se una serie è divergente, allora ogni sua maggiorante è divergente. Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ sono due serie a termini positivi e se $\forall n$ risulta $a_n \leq c \cdot b_n$, essendo c una costante positiva, allora si ha che:

- Se $\sum_{n=1}^{\infty} b_n$ converge a S_b , allora $\sum_{n=1}^{\infty} a_n$ converge a S_a ;
- Se $\sum_{n=1}^{\infty} a_n$ diverge, allora anche $\sum_{n=1}^{\infty} b_n$ diverge

Secondo criterio del confronto

Due serie a termini positivi $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ hanno lo stesso carattere se esiste finito e non nullo il limite del rapporto dei loro termini generali, ossia se:

$$\lim_{n} \frac{a_n}{b_n} = l(\neq 0) < \infty$$

Serie armonica generalizzata

In generale, la cosiddetta serie armonica generalizzata:

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}, con \ \alpha \in R$$

- Diverge se $\alpha \leq 0$ in quanto il suo termine generale non è un infinitesimo per $n \to \infty$;
- Diverge se $0<\alpha<1$ in quanto il suo termine generale è minorato dal termine generale della serie armonica $\frac{1}{n^\alpha}>\frac{1}{n}$
- Diverge se $\alpha = 1$ in quanto si ottiene la serie armonica
- Converge se $\alpha = 2$
- Converge se $\alpha > 2$ in quanto il suo termine generale è maggiorato dal termine generale della serie armonica generalizzata per $\alpha = 2$: $\frac{1}{n^{\alpha}} < \frac{1}{n^2}$
- Converge se $1 < \alpha < 2$

Convergenza per serie a termini positivi

Criterio del rapporto o di D'Alembert

Data una serie a termini positivi $\sum_{n=1}^{\infty} a_n$ si supponga che esista finito il limite del rapporto tra due termini consecutivi. Allora,

$$\lim_{n} \frac{a_{n+1}}{a_n} = l \begin{cases} < 1, & la \ serie \ converge \\ = 1, & nulla \ si \ pu\`{o} \ dire \\ > 1, & la \ serie \ diverge \end{cases}$$

Criterio della radice o di Cauchy

Data una serie a termini positivi $\sum_{n=1}^{\infty} a_n$ si supponga che esista e sia finito il limite della radice n-esima del suo termine generale. Allora,

$$\lim_{n} \sqrt[n]{a_n} = l \begin{cases} < 1, & la \ serie \ converge \\ = 1, & null \ a \ si \ pu\`{o} \ dire \\ > 1, & la \ serie \ diverge \end{cases}$$

Serie a termini qualsiasi

Diremo che una serie è a termini qualsiasi se i suoi termini sono sia positivi che negativi.

Tra tali serie, rivestono un ruolo importante le serie a segni alterni, ossia serie i cui termini di posto pari sono positivi, mentre quelli di posto dispari sono negativi o viceversa come, ad esempio:

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n} = -\frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \frac{1}{8} \dots$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Criterio di Leibnitz

Se i valori assoluti dei termini di una serie a segni alterni costituiscono una successione monotona non crescente, cioè se

$$|a_0| \ge |a_1| \ge |a_2| \ge \cdots |a_n| \ge \cdots$$

e se il termine generale converge a zero per $n \to \infty$ allora la serie converge

Serie a termini qualsiasi

Definizione

Diremo che la serie

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + \dots + a_n + \dots$$

è assolutamente convergente se converge la serie dei suoi valori assoluti,

$$\sum_{n=1}^{\infty} |a_n|$$

Teorema

Se una serie è assolutamente convergente, allora essa è anche convergente