

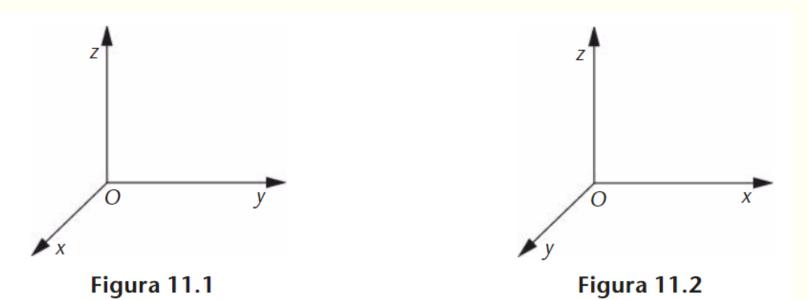
# GEOMETRIA DELLO SPAZIO

Prof. Roberto Capone A.A. 2018/19 Corso di Laurea in Ingegneria Meccanica/Gestionale

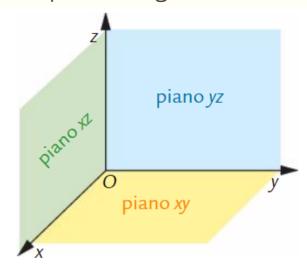


# Introduzione alla geometria analitica dello spazio

Anche lo spazio, come il piano, può essere riferito a un sistema di assi cartesiani ortogonali, procedendo come segue: si considerano tre rette a due a due ortogonali, dette asse x, asse y e asse z, tutte e tre passanti per un punto O, origine del sistema di riferimento; si orientano i tre assi e si considera su di essi una unità di misura; se l'orientamento è come in fig. 11.1 il sistema di riferimento si dice destro, mentre se è come in fig. 11.2 si dice sinistro



Il piano che contiene gli assi x e y è detto piano xy; analogamente il piano che contiene gli assi x e z è detto piano xz e il piano che contiene gli assi y e z è detto piano yz (fig. 11.3). I tre piani xy, yz e xz, detti piani coordinati, dividono lo spazio in otto parti, detti ottanti(gli analoghi dei quadranti nel piano). A ogni punto P dello spazio è possibile associare una terna ordinata di numeri reali (x,y,z, che costituiscono le coordinate del punto P(fig. 11.4)



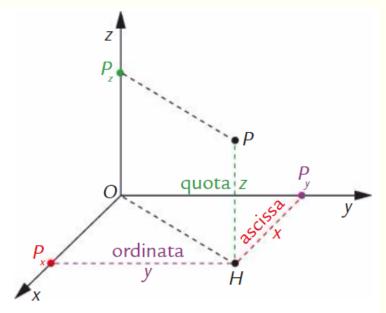
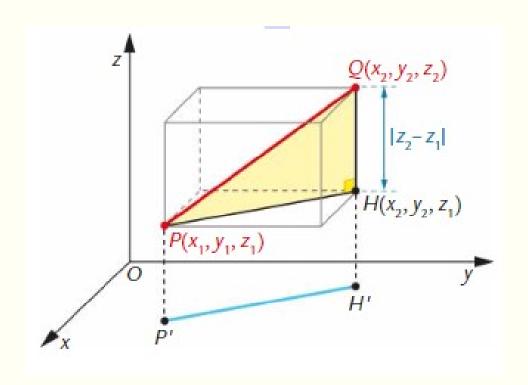


Figura 11.3

Figura 11.4

### Distanza tra due punti



#### Distanza tra due punti nello spazio

Nello spazio, la distanza d tra due punti di coordinate  $(x_1, y_1, z_1)$  e  $(x_2, y_2, z_2)$ , è espressa dalla formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

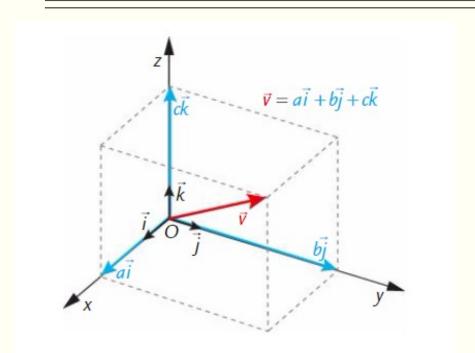
### Punto medio di un segmento

### **PUNTO MEDIO DI UN SEGMENTO NELLO SPAZIO**

Il **punto medio** di un segmento i cui estremi hanno coordinate  $(x_1, y_1, z_1)$  e  $(x_2, y_2, z_2)$ , ha coordinate:

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

### Vettori nello spazio

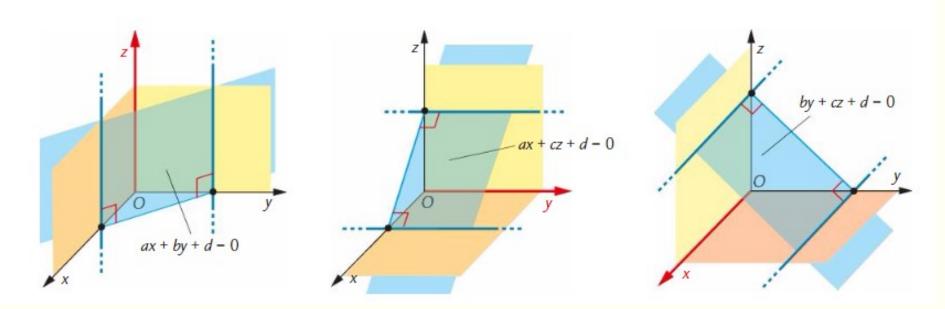


$$ax + by + cz + d = 0$$

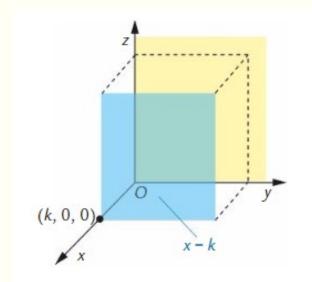
### Equazione del piano passante per un punto, di dato vettore normale

Il piano passante per il punto  $P_0(x_0, y_0, z_0)$  e di vettore normale  $\overrightarrow{n}(a, b, c)$  ha equazione:

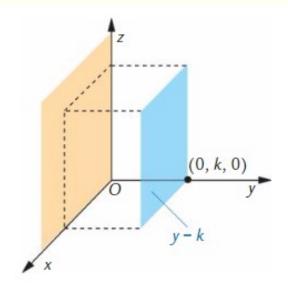
$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$
 [11.2]



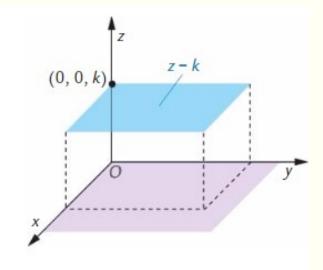
- a. Piano parallelo all'asse z (deve perciò intersecare i piani xz e yz lungo rette parallele all'asse z). Tale piano è anche perpendicolare al piano xy.
- b. Piano parallelo all'asse y (deve perciò intersecare i piani yz e xy lungo rette parallele all'asse y). Tale piano è anche perpendicolare al piano xz.
- c. Piano parallelo all'asse x (deve perciò intersecare i piani xy e xz lungo rette parallele all'asse x). Tale piano è anche perpendicolare al piano yz.



a. Piano parallelo al piano yz.



**b.** Piano parallelo al piano *xz*.

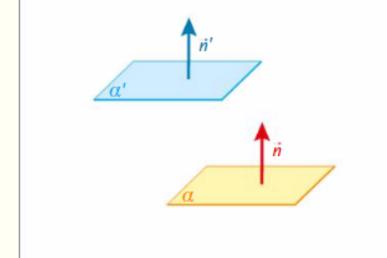


c. Piano parallelo al piano yz.

### Parallelismo tra due piani

#### Condizione di parallelismo tra i due piani

$$ax + by + cz + d = 0$$
  
e  $a'x + b'y + c'z + d' = 0$ 



I due piani sono *paralleli* se e solo se lo sono i due vettori normali:

$$\overrightarrow{n}(a,b,c) \in \overrightarrow{n'}(a',b',c')$$

Ciò si verifica se e solo se esiste  $k \in \mathbf{R}$  tale che:

$$a = ka'$$
,  $b = kb'$ ,  $c = kc'$ 

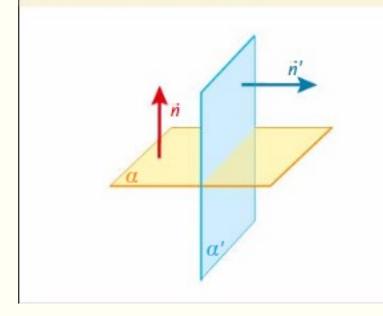
ovvero, se a', b',  $c' \neq 0$ , quando:

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

### Perpendicolarità tra due piani

### Condizione di perpendicolarità tra i due piani

$$ax + by + cz + d = 0$$
  
e  $a'x + b'y + c'z + d' = 0$ 



I due piani sono *perpendicolari* se e solo se lo sono i due vettori normali:

$$\overrightarrow{n}(a,b,c) \in \overrightarrow{n'}(a',b',c')$$

Ciò si verifica se e solo se risulta:

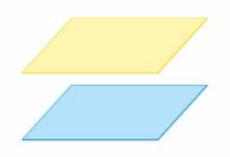
$$\overrightarrow{n} \cdot \overrightarrow{n} = 0$$

da cui la condizione:

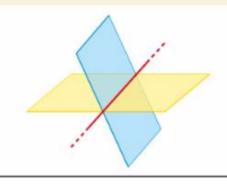
$$aa' + bb' + cc' = 0$$

### Posizione reciproca tra due piani

#### Piani paralleli distinti



#### Piani secanti



#### Piani paralleli coincidenti



#### Il sistema

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$$

non ammette soluzioni.

#### Il sistema

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$$

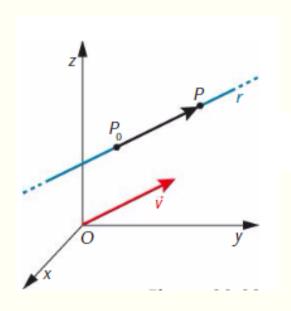
ammette infinite soluzioni, tutte appartenenti a una medesima retta.

#### Il sistema

$$\begin{cases} ax + by + cz + d = 0 \\ a'x + b'y + c'z + d' = 0 \end{cases}$$

è verificato da ogni terna ordinata (x, y, z) che soddisfa la prima equazione (o la seconda).

### Equazione della retta nello spazio



$$\overrightarrow{P_0P} = t \overrightarrow{v} \quad \text{con } t \in \mathbf{R}$$

$$\overrightarrow{P_0P}(x-x_0, y-y_0, z-z_0)$$
 e  $t \cdot \overrightarrow{v} = (ta, tb, tc)$ 

$$\begin{cases} x - x_0 = ta \\ y - y_0 = tb \end{cases} \Rightarrow \begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

#### **EQUAZIONI PARAMETRICHE DI UNA RETTA NELLO SPAZIO**

La retta passante per il punto  $P_0(x_0, y_0, z_0)$  e di vettore direzione  $\overrightarrow{v}(a, b, c)$  ha equazioni parametriche:

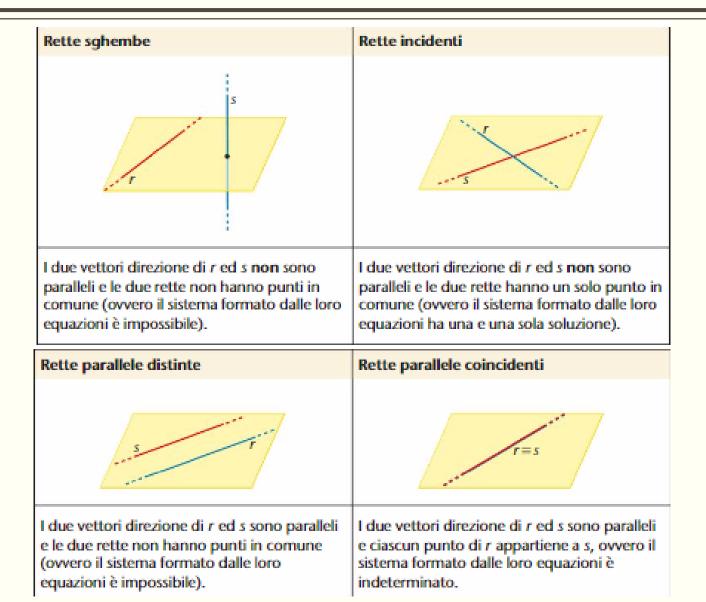
$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$
 [11.5]

# Equazione della retta nello spazio

Se i numeri a, b, c sono diversi da zero, possiamo eliminare il parametro t e ottenere le equazioni cartesiane della retta:

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

### Posizione reciproca di due rette nello spazio



## Parallelismo e perpendicolarità tra retta e piano

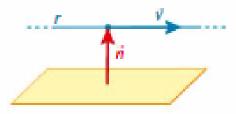
#### Condizione di parallelismo tra:

un piano di equazione

$$ax + by + cz + d = 0$$

una retta di vettore direzione

$$\overrightarrow{v}(I, m, n)$$



La retta è parallela al piano se e solo se il vettore  $\overrightarrow{n}(a, b, c)$  normale al piano è perpendicolare al vettore direzione  $\overrightarrow{v}(l, m, n)$  della retta. Ne seque la condizione:

$$\overrightarrow{n} \cdot \overrightarrow{v} = 0$$

da cui:

$$la + mb + nc = 0$$

# Parallelismo e perpendicolarità tra retta e piano

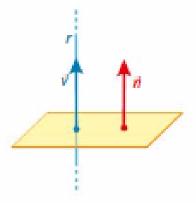
#### Condizione di perpendicolarità tra:

un piano di equazione

$$ax + by + cz + d = 0$$

una retta di vettore direzione

$$\overrightarrow{v}(l, m, n)$$



La retta è perpendicolare al piano se e solo se il vettore direzione  $\overrightarrow{v}(l,m,n)$  della retta è parallelo al vettore  $\overrightarrow{n}(a,b,c)$  normale al piano. Ciò si verifica se e solo se esiste  $k \in \mathbf{R}$  tale che:

$$l = ka, m = kb, n = kc$$

ovvero, se  $a, b, c \neq 0$ , quando:

$$\frac{1}{a} = \frac{m}{b} = \frac{n}{c}$$

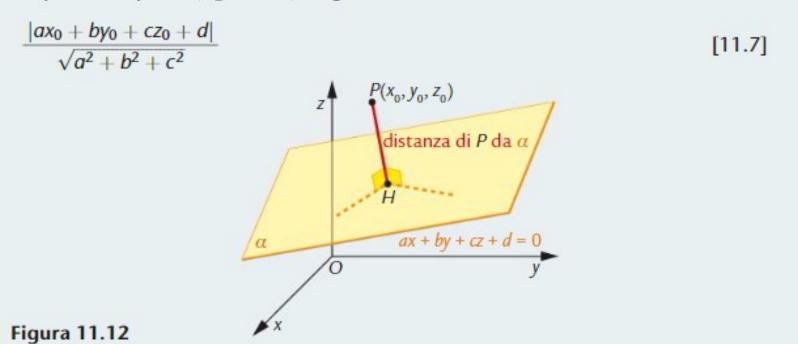
# Posizione reciproca tra retta e piano

| Retta parallela al piano                                                                                                                                                                                       | Retta incidente il piano                                                                        | Retta che giace sul piano                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r                                                                                                                                                                                                              |                                                                                                 | a a                                                                                                                                                                                               |
| Il vettore normale al piano<br>è perpendicolare al vettore direzione<br>della retta e inoltre piano e retta non<br>hanno punti in comune<br>(ovvero il sistema formato dalle loro<br>equazioni è impossibile). | Il vettore normale al piano <b>non</b><br>è perpendicolare al vettore direzione<br>della retta. | Il vettore normale al piano è perpendicolare al vettore direzione della retta e tutti i punti della retta appartengono al piano (ovvero il sistema formato dalle loro equazioni è indeterminato). |

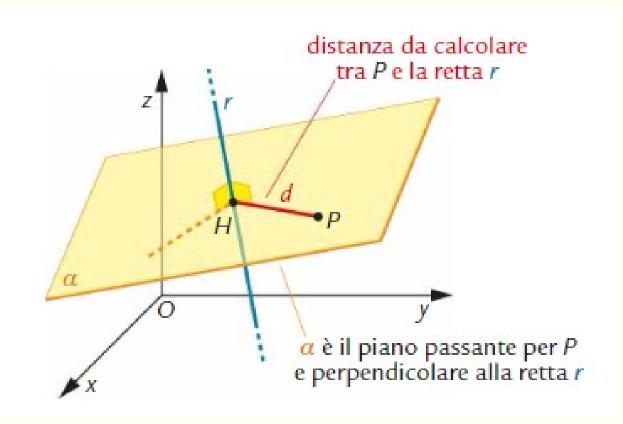
### Distanza di un punto da un piano

### Distanza di un punto da un piano

Dato il piano di equazione ax + by + cz + d = 0 e un punto  $P(x_0, y_0, z_0)$ , la **distanza** del punto dal piano (fig. 11.12) è uguale a:



### Distanza di un punto da una retta



La distanza di P dalla retta r è uguale alla distanza tra P e H, essendo H il punto d'intersezione della retta r con il piano passante per P e perpendicolare a r.

Determiniamo la distanza del punto P(2, -1, 5) dalla retta r di equazioni

$$\begin{cases} x = -3 + 3t \\ y = -2t \\ z = 2 + 4t \end{cases}$$

### • Scriviamo l'equazione del piano $\alpha$ per P perpendicolare alla retta r

La retta r ha come vettore direzione  $\overrightarrow{v}(3, -2, 4)$ .

Il piano passante per P e perpendicolare alla retta r deve avere come vettore normale  $\overrightarrow{v}$ , dunque la sua equazione è:

$$3(x-2) - 2(y+1) + 4(z-5) = 0$$

ossia:

$$3x - 2y + 4z - 28 = 0$$

#### • Determiniamo il punto d'intersezione *H* della retta *r* con il piano

Dobbiamo risolvere il sistema:

$$\begin{cases} x = -3 + 3t \\ y = -2t \\ z = 2 + 4t \\ 3x - 2y + 4z - 28 = 0 \end{cases}$$

Sostituendo nell'equazione del piano le espressioni di x, y e z fornite dalle equazioni parametriche della retta, otteniamo l'equazione risolvente nell'incognita t:

$$3(-3+3t)-2(-2t)+4(2+4t)-28=0 \Rightarrow t=1$$

Sostituendo infine nelle equazioni parametriche della retta il valore t = 1, otteniamo le coordinate di H:

$$\begin{cases} x = -3 + 3 \cdot 1 \\ y = -2 \cdot 1 \\ z = 2 + 4 \cdot 1 \end{cases} \Rightarrow H(0, -2, 6)$$

Scrivi l'equazione del piano passante per i tre punti A(1, 0, 2), B(0, 1, 3), C(0, 0, 3).

 L'equazione generale del piano ax + by + cz + d = 0 dipende apparentemente da quattro parametri, a, b, c e d, ma in realtà i parametri essenziali sono solo tre. In questo caso, per esempio, certamente d ≠ 0 (perché il piano dato non può passare per l'origine); dividendo i due membri dell'equazione per d, otteniamo l'equazione:

$$\frac{a}{d}x + \frac{b}{d}y + \frac{c}{d}z + 1 = 0$$

ossia, ponendo  $\frac{a}{d} = p$ ,  $\frac{b}{d} = q$ ,  $\frac{c}{d} = r$  si ottiene:

$$px + qy + rz + 1 = 0$$

Per determinare l'equazione del piano è sufficiente perciò determinare i tre parametri p, q ed r.

• Imponendo che i punti A, B e C appartengono al piano di equazione px + qy + rz + 1 = 0 si ottiene il sistema:

$$\begin{cases} p + 2r + 1 = 0 \\ q + 3r + 1 = 0 \\ 3r + 1 = 0 \end{cases}$$

da cui  $p = -\frac{1}{3}$ , q = 0,  $r = -\frac{1}{3}$ . Ora puoi facilmente concludere.

[x+z-3=0]

Scrivi le equazioni parametriche della retta passante per il punto P(3, 1, 3), perpendicolare e incidente alla retta r

di equazioni 
$$\begin{cases} x = 5 + 2t \\ y = 1 - t \\ z = 6 + 3t \end{cases}$$

- Considera sulla retta r un generico punto Q(5+2t, 1-t, 6+3t), con  $t \in \mathbb{R}$ , e imponi che il vettore  $\overrightarrow{PQ}$  sia perpendicolare al vettore direzione della retta r.
- Risolvi l'equazione in *t* che ne scaturisce e determina il punto *Q* corrispondente al valore di *t* trovato.
- La retta cercata è quella che passa per i due punti P e Q.

$$\left[x=3+\frac{1}{7}k, y=1+\frac{13}{14}k, z=3+\frac{3}{14}k\right]$$

Verifica che le due rette di equazioni parametriche 
$$\begin{cases} x = 1 + 2t \\ y = 1 - t \\ z = t \end{cases}$$
 \quad \begin{cases} x = 1 + k \\ y = 2k \quad \text{sono sghembe.} \quad \text{z} = -k

- Per verificare che le due rette sono sghembe devi verificare che non sono parallele e che non hanno punti d'intersezione.
- Per verificare che non sono parallele è sufficiente verificare che non sono paralleli i loro vettori direzione.
- Per verificare che non hanno punti in comune, devi verificare che il sistema seguente è impossibile:

$$\begin{cases} 1+2t=1+k\\ 1-t=2k\\ t=-k \end{cases}$$
 [\*]

A tale scopo puoi ricavare t e k da due delle tre equazioni del sistema [\*] e poi verificare che i valori di t e k trovati non soddisfano l'equazione rimanente.