ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

1	Scrivi l'equazione della retta tangente al grafico di $f(x) = (1 + 2x)^4$ nel suo punto di intersezione con l'asse y	y=8x+1
2	Scrivi l'equazione della retta tangente al grafico di $f(x) = (1 - 2x)^3$ nel suo punto di ascissa 1	y = 5 - 6x
3	Scrivi l'equazione della retta tangente al grafico della funzione $f(x) = log^3 x$ nel suo punto di ascissa e	$y = \frac{3}{e}x - 2$
4	Scrivi l'equazione della retta tangente al grafico della funzione $f(x)=e^{sinx}$ nel suo punto di ascissa π	$y = -x + \pi + 1$
5	Determina per quali valori di k la funzione $f(x) = e^{kx}$ soddisfa la relazione $y'' + 4y' - 5e^{kx} = 0$	k=-5, k=1
6	Considera la funzione	a = 1
	$f(x) = \begin{cases} a + \sqrt{x} & x \ge 0 \\ e^{-x} & x < 0 \end{cases}$	
	Determina per quale valore di $a \in R$ è continua in x=0 e traccia il grafico della funzione corrispondente	
7	Data la funzione:	a=0,a=1/2
	$f(x) = \begin{cases} \left(\frac{e^{3x} - 1}{x}\right)^a & x > 0\\ 9^{x + a^2} & x \le 0 \end{cases}$	
	determina i valori di $a \in R$ per cui la funzione è continua in R	
8	Data la funzione	$k=\pm\frac{1}{2}$
	$f(x) = \begin{cases} \frac{2\sin x - \sin 2x}{2x^3} & x > 0\\ 2k^2 + kx^3 - x & x \le 0 \end{cases}$	
	determina per quali valori di k la funzione è continua in $x=0$	
9	Determinare, se esistono, i valori dei parametri reali a e b in modo che la seguente funzione dia derivabile in R	a=2,b=1/2
	$f(x) = \begin{cases} 3 + 2x + ax^3 & x < 0 \\ 2^{x+2b} + ab & x \ge 0 \end{cases}$	
10	Determinare, se esistono, i valori dei parametri reali a e b in modo che la seguente funzione dia derivabile in R	a=-1,b=1

	$f(x) = \begin{cases} 3a\cos x - \sqrt{2} & x \le \frac{3}{4}\pi \\ b\sin 3x & x > \frac{3}{4}\pi \end{cases}$	
11	Determinare, se esistono, i valori dei parametri reali a e b in modo che la seguente funzione dia derivabile in R	$a=-\frac{1}{2},b=-\frac{3}{4}$
	$f(x) = \begin{cases} (a-1)\log(x-1) & x > 2\\ bx^2 - 3ax & x \le 2 \end{cases}$	
12	Determinare il valore del parametro a affinché la derivata della	a=2;
	funzione di equazione $f(x) = ax^3 - (2a + 2)x + a - 1$ si annulli in corrispondenza di x=1. Determinare, quindi, le coordinate dei punti stazionari della funzione ottenuta in corrispondenza di a trovato	(-1; 5); (1; -3)
13	Rappresenta la funzione assegnata e determina gli intervalli in cui $f(x)$	
	è continua e quelli in cui è derivabile.	
	$f(x) = \left \cos\left(x + \frac{\pi}{6}\right)\right $	
14	Rappresenta la funzione assegnata e determina gli intervalli in cui $f(x)$	
	è continua e quelli in cui è derivabile.	
	$f(x) = \sqrt{\ln(x-2)}$	
15	Data la seguente funzione e il punto indicato a fianco: a) rappresenta la funzione; b) calcola la sua derivata; c) la funzione è continua nel punto? d) la funzione è derivabile nel punto? $y = \begin{cases} 1 & \text{se } x \ge 0 \\ e^x & \text{se } x < 0 \end{cases}, x = 0.$	
16	Data la seguente funzione e il punto indicato a fianco: a) rappresenta la funzione; b) calcola la sua derivata; c) la funzione è continua nel punto? d) la funzione è derivabile nel punto? $y = \begin{cases} e^x & \text{se } x \ge 0 \\ 1 & \text{se } x < 0 \end{cases}, x = 0.$	
17	Un corpo si muove in linea retta seguendo la legge oraria $s = 2t + e^{-2t} + 1$. Determina la velocità e l'accelerazione del corpo al variare del tempo e trova in quale istante la velocità è nulla.	

18	Un corpo si muove in linea retta seguendo la legge oraria $s=3t+e^{-3t}+3$. Determina la velocità e l'accelerazione del corpo al variare del tempo e trova in quale istante la velocità è nulla.	
19	La traiettoria descritta da un corpo in un piano xOy ha le seguenti equazioni orarie: $\begin{cases} x = 2t - 1 \\ y = \frac{1}{t^2 + 1} \end{cases}$ dove t è misurato in secondi e lo spazio è misurato in metri. Scrivi l'equazione cartesiana della traiettoria e calcola il modulo della velocità all'istante $t = 1$ s , sapendo che la velocità istantanea è rappresentata da un vettore di componenti $\vec{v}(t) = \left(x'(t); y'(t)\right)$	
20	La traiettoria descritta da un oggetto su un piano xOy ha le seguenti equazioni orarie: $\begin{cases} x=3t-1\\ y=\frac{1}{t^2+3} \end{cases}$ dove t è misurato in secondi e lo spazio è misurato in metri. Scrivi l'equazione cartesiana della traiettoria e calcola il modulo della velocità all'istante $t=1$ s , sapendo che la velocità istantanea è rappresentata da un vettore di componenti $\vec{v}(t)=\left(x'(t);y'(t)\right)$.	

Esercizio svolto

Determiniamo k (con k>0) in modo che le curve di equazione $y=k\sqrt{x}$ e $y=x^2+1$ siano tangenti

Indichiamo con $P(x_0, y_0)$ il punto di tangenza incognito tra le due curve.

Se P appartiene a entrambe le curve deve soddisfare alle seguenti condizioni

$$\begin{cases} y_0 = k\sqrt{x_0} \\ y_0 = x_0^2 + 1 \\ \frac{k}{2\sqrt{x_0}} = 2x_0 \end{cases}$$

Risolvendo il sistema si trova

$$\begin{cases} x_0 = \frac{\sqrt{3}}{3} \\ y_0 = \frac{4}{3} \\ k = \frac{4}{3} \sqrt[4]{3} \end{cases}$$

Per cui le curve sono tangenti per $k = \frac{4}{3} \sqrt[4]{3}$ e il suo punto di contatto è $\left(\frac{\sqrt{3}}{3}; \frac{4}{3}\right)$

Esercizio svolto

Determiniamo, se esistono, i valori di a e b per cui la funzione

$$f(x) = \begin{cases} a + \sqrt{3x^2 + 1} & x \le 1 \\ b \log x + x & x > 1 \end{cases}$$

è derivabile in R.

La funzione è derivabile per ogni $x \neq 1$ quindi, affinché sia derivabile in R, è sufficiente che sia derivabile in x = 1

Perché la funzione sia derivabile in x = 1, deve anzitutto essere ivi continua, quindi deve essere:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) \quad \Rightarrow \quad \lim_{x \to 1^{-}} (a + \sqrt{3x^{2} + 1}) = \lim_{x \to 1^{+}} (b \log x + x)$$

$$\Rightarrow \quad a + 2 = 1 \quad \Rightarrow \quad a = -1$$

Supposto a = 1 si ha:

$$f(x) = \begin{cases} -1 + \sqrt{3x^2 + 1} & x \le 1\\ blog x + x & x > 1 \end{cases} \qquad f'(x) = \begin{cases} \frac{3x}{\sqrt{3x^2 + 1}} & x \le 1\\ \frac{b}{x} + 1 & x > 1 \end{cases}$$

Affinché la funzione sia derivabile in x = 1 deve aversi

$$\lim_{x \to 1^{-}} f'(x) = \lim_{x \to 1^{+}} f'(x) \qquad \Rightarrow \qquad \lim_{x \to 1^{-}} \frac{3x}{\sqrt{3x^{2} + 1}} = \lim_{x \to 1^{+}} \frac{b}{x} + 1$$

Da cui si ottiene b = 1/2

21	Determina k in modo che le due curve di equazioni $y = e^x$ e $y = 6 - ke^{-x}$ siano tangenti	<i>k</i> = 9
22	Determina, se esistono, i valori di a e b per cui le funzioni date sono derivabili in R	a = b = 1

29	Determina k (con k>0) in modo che le curve di equazione $y = x^2$ e $y = klogx$ siano tangenti	k = 2e
30	Rappresenta la funzione assegnata e determina gli intervalli in cui $f(x)$ è continua e quelli in cui è derivabile. $f(x) = \left \sec \left(x - \frac{2}{3} \pi \right) \right $	

31	Data la funzione $f(x) = \frac{3x+4}{2x}$, determina l'equazione della retta	J
	tangente al suo grafico nel punto di ascissa $x = -1$	_

nel p 33 Deter in cu 34 Deter di eq 35 Deter funzi punt 36 Deter ha un coord 37 Stabi è con punt 38 Date a b c d 39 Indiv	ermina il valore del parametro a per cui la tangente al grafico della ione $f(x) = \frac{ax^2 + 3x}{2x + 1}$ punto di ascissa $x = 2$ risulta orizzontale. Ermina le ascisse dei punti appartenenti al grafico della funzione $f(x) = \frac{x^2 + 4x}{2x - 1}$ ni la retta tangente ha coefficiente angolare $m = -1$ ermina le equazioni delle rette tangenti sia al grafico della parabola quazione $y = -27x^2$ sia al grafico della funzione $f(x) = \frac{1}{x^2}$ ermina l'angolo α formato dalle rette tangenti ai grafici delle ioni $f(x) = x^2 + 6x - 2$ e $f(x) = 2log x - 1 - \frac{x^2 + 2x}{2}$ nei loro ti di ascissa -2	$a = -\frac{1}{4}$ $x = \frac{1 \mp \sqrt{3}}{2}$ $y = \pm 54x + 27$ $\alpha = \frac{\pi}{4}$
33 Determine in cursus and in	Fruinto di ascissa $x=2$ risulta orizzontale. Fruinta le ascisse dei punti appartenenti al grafico della funzione $f(x)=\frac{x^2+4x}{2x-1}$ di la retta tangente ha coefficiente angolare $m=-1$ ermina le equazioni delle rette tangenti sia al grafico della parabola quazione $y=-27x^2$ sia al grafico della funzione $f(x)=\frac{1}{x^2}$ ermina l'angolo α formato dalle rette tangenti ai grafici delle ioni $f(x)=x^2+6x-2$ e $f(x)=2log x-1 -\frac{x^2+2x}{2}$ nei loro ti di ascissa -2	$y = \pm 54x + 27$
in cu 34 Deter di eq 35 Deter funzi punt 36 Deter ha ur coore 37 Stabi è com punt 38 Date a b c d 39 Indiv	$f(x) = \frac{x^2 + 4x}{2x - 1}$ ni la retta tangente ha coefficiente angolare $m = -1$ ermina le equazioni delle rette tangenti sia al grafico della parabola quazione $y = -27x^2$ sia al grafico della funzione $f(x) = \frac{1}{x^2}$ ermina l'angolo α formato dalle rette tangenti ai grafici delle ioni $f(x) = x^2 + 6x - 2$ e $f(x) = 2log x - 1 - \frac{x^2 + 2x}{2}$ nei loro ti di ascissa -2	$y = \pm 54x + 27$
34 Determined and a distribution of the confession of the confessi	ermina le equazioni delle rette tangenti sia al grafico della parabola quazione $y=-27x^2$ sia al grafico della funzione $f(x)=\frac{1}{x^2}$ ermina l'angolo α formato dalle rette tangenti ai grafici delle ioni $f(x)=x^2+6x-2$ e $f(x)=2log x-1 -\frac{x^2+2x}{2}$ nei loro ti di ascissa -2	
35 Determine funzi punt 36 Determine 37 Stabi	quazione $y=-27x^2$ sia al grafico della funzione $f(x)=\frac{1}{x^2}$ ermina l'angolo α formato dalle rette tangenti ai grafici delle ioni $f(x)=x^2+6x-2$ e $f(x)=2log x-1 -\frac{x^2+2x}{2}$ nei loro ti di ascissa -2	
funzi punt 36 Determination of the punt o	ioni $f(x) = x^2 + 6x - 2 e f(x) = 2log x - 1 - \frac{x^2 + 2x}{2}$ nei loro ti di ascissa -2	$\alpha = \frac{\pi}{4}$
ha un coord 37 Stabi è compunt 38 Date a b c d 39 Indiv	ermina i narametri a h c ner cui il grafico della funzione	
37 Stabi è con punt 38 Date a b c d 39 Indiv	$f(x) = e^{\frac{ax^2 + bx}{x + c}}$ n asintoto verticale di equazione x=1, passa per il punto di edinate $(2, e^4)$ e ha ivi tangente orizzontale	a = 1, b = 0, $c = -1$
a b c d	ilisci se la funzione $f(x) = \begin{cases} \frac{x^2 + 8x - 20}{x - 5} & \text{se } x < 2\\ 2\sqrt{x - 2} & \text{se } x \ge 2 \end{cases}$ ntinua e derivabile e determina le rette tangenti al suo grafico nei ti di ascisse $x = -1$ e $x = 3$	Continua ma non derivabile in x=2; $y = -\frac{1}{4}x + \frac{17}{4};$ $y = x - 1$
è per	e le funzioni $f(x) = x^3 + 3x$ e $g(x) = \sqrt{x+3}$ a. Scrivi l'espressione analitica della funzione $h(x) = f^{\circ}g$ b. Stabilisci se è derivabile nel suo campo di esistenza c. Traccia il grafico della funzione $h(x)$ d. Trova la tangente al grafico di $h(x)$ nel suo punto di ascissa -2	$h(x)$ $= x + 3 + 3\sqrt{x + 3}$ derivabile per x>-3 $y = \frac{5}{2}x + 9$
40 Data	vidua il punto in cui la retta tangente al grafico della funzione $f(x) = log\left(\frac{4x}{x^2 + 2}\right)$	$\left(1,\log\frac{4}{3}\right)$
detei	rpendicolare alla retta di equazione $y = x + 3$	
41 Dete	90 I =/	

		1
	 a. Ha per asintoto orizzontale la retta di equazione y=2 b. Passa per il punto P(2; 0) ed ha in tale punto tangente parallela 	
	alla retta di equazione $y = 2x$	
42	Determina a,b,c in modo che a curva di equazione	a = -2; $b = 2$; $c = -3$
42	$f(x) = \frac{ax+1}{x^2 + bx + c}$	u = 2, b = 2, c = 3
	** . *** . *	
	soddisfi le seguenti condizioni: a. Ha per asintoti verticali le rette di equazioni $x = -3$ e $x = 1$	
	b. La tangente nel suo punto di intersezione con l'asse y è parallela	
	alla retta di equazione $4x - 9y + 1 = 0$	
43	Data la funzione	a = -4; b = -2; $c = -7$
	$f(x) = \begin{cases} ax + b & x \le 1\\ x^3 + cx & x > 1 \end{cases}$	<i>t = -7</i>
	trova a,b,c in modo che sia continua e derivabile per ogni $x \in R$ e abbia	
	nel punto di ascissa 2 tangente parallela ala retta di equazione $y = 5x - 1$	
44	Determina i punti appartenenti al grafico della funzione $f(x) = x^3 - 3x^2$ in cui la retta tangente è parallela alla retta di equazione $y = 9x$	(-1; -4), (3; 0)
	3x III cui la l'etta tangente è paraneia ana l'etta ui equazione y = 3x	
45	Determina a, b, c in modo che la funzione	$a = 2; b = 2; c = -2\pi$
	$(x^2 + ax x < 0$	
	$f(x) = \begin{cases} x^2 + ax & x < 0\\ \sin 2x & 0 \le x \le \pi\\ bx + c & x \ge \pi \end{cases}$	
	$(bx+c x \ge \pi$	
	sia derivabile $\forall x \in R$. Traccia il grafico della funzione in	
	corrispondenza dei valori a,b,c trovati.	
46	Data la funzione	a = 1/2; b = 1; c = 0
	$f(x) = \begin{cases} e^x - 1 & x < 0 \\ ax^2 + bx + c & x \ge 0 \end{cases}$	
	Determina a,b,c in modo che funzione sia derivabile due volte in R.	
	Traccia il grafico della funzione in corrispondenza dei valori di a,b,c trovati.	
		16
47	Considera la funzione $f(x) = ax^3 + bx^2 + cx + d$	$a = \frac{16}{9}; b = 0;$
	Determina i coefficienti a,b,c in modo che siano soddisfatte tutte le	c = -4; $d = 0$
	seguenti condizioni:	
	a. La funzione è disparib. La tangente al grafico della funzione nell'origine è la retta di	
	equazione $y = -4x$	
	c. Il grafico della funzione interseca l'asse x, oltre che nell'origine, in altri due punti distinti e la tangente nel punto d'intersezione	
	con il semiasse delle ascisse positive passa per il punto di	
	coordinate (2; 4)	
48	Considera la funzione	a = -1; b = 0;
	$f(x) = ax^3 + bx^2 + cx + d$	c = 2; d = 0 $y = 2x$
	$f(x) = ax^2 + bx^2 + cx + a$	$y = 2x$ $y = -\frac{19}{4}x + \frac{27}{4}$
l l		

	(0) 0 ((1) 1 (1) 7 (1)	
	 f(0) = 0, f(1) = 1, f'(0) = 2, f"(1) = -6. b. Scrivi le equazioni delle rette tangenti al grafico della funzione passanti per P(1; 2) e indica con A e B i punti di contatto delle tangenti con la curva di equazione y = f(x). c. Determina l'area del triangolo APB 	$A(0;0), B\left(\frac{3}{2}, -\frac{3}{8}\right)$ $A = \frac{27}{16}$
49	Considera la funzione	$a = \frac{3}{1}$; $b = -2$; $c = 0$
	$f(x) = ax^3 + bx^2 + c$	$a = \frac{3}{4}; b = -2; c = 0$ $y = 0; y = x - 4$ $y = \frac{128}{3}(x - 4)$
	a. Determina a,b,c in modo che $f(0) = 0$, $f''(x) = \frac{9}{2}x - 4$	$y = \frac{128}{3}(x - 4)$
	b. Scrivi le equazioni delle rette passanti per il punto $P(4; 0)$ e tangenti alla curva di equazione $y = f(x)$.	3
50	Considera la funzione	a = -2; b = -9
	$f(x) = \frac{x^2 + ax}{x^2 + b}$	$x = \frac{9 \pm 3\sqrt{5}}{2}$
	a. Determina a e b in modo che abbia come asintoto verticale la	x = 0, x = 2
	retta di equazione $x = 3$ e che la tangente nell'origine al grafico	
	di f sia parallela alla retta di equazione $2x - 9y + 9 = 0$	
	b. Traccia il grafico probabile della funzione $y = f(x)$ in corrispondenza dei valori a e b trovati al punto precedente.	
	c. Determina le ascisse dei punti in cui la tangente al grafico di f è	
	orizzontale d. Traccia il grafico della funzione $y = f(x) $ e determina i punti	
	dove non è derivabile.	
F 1	Canaidana la famaiana	a = 1; b = -3;
51	Considera la funzione $f(x) = \frac{ax^2 + bx + c}{x + d}$	c = -4; d = -1
	 a. Determina a,b,c,d in modo che abbia come asintoto verticale la retta di equazione x = 1, come asintoto obliquo la retta di equazione y = x - 2 e come tangente nel punto di ascissa x = 2 una retta parallela alla retta di equazione y = 7x b. Traccia il grafico probabile della funzione ottenuta c. Stabilisci se esistono punti appartenenti al grafico di f aventi tangente orizzontale. d. Indicati con P e Q, rispettivamente, i punti in cui il grafico di f interseca il semiasse delle ascisse negative e il semiasse delle 	
	ascisse positive, scrivi le equazioni delle rette tangenti in P e Q a f .	
52	Considera la funzione $f(x) = \frac{\sqrt{x^2 + a}}{x + b}$	$a = 4, b = 2$ Asintoti: $x = -2$, $y = -1, y = 1$ $y = 1 - \frac{1}{2}x$
	a. Determina a e b in modo che la retta di equazione $x = -2$ sia un asintoto della funzione e nel punto $x = 2$ la tangente al grafico	
	della funzione sia orizzontale b. Traccia il grafico probabile della funzione in corrispondenza dei	
	valori di a e b trovati c. Determina l'equazione della retta tangente al grafico di f nel suo	
	punto P di intersezione con l'asse y	
53	Considera la funzione	a = 1, b = 2
		x = e

	 f(x) = alogx/x + b a. Sapendo che il grafico della funzione passa per il punto A(1; 2) e ammette ivi come tangente la retta passante per A e parallela alla bisettrice del primo e del terzo quadrante, determina i valori di a e b. b. Determina l'ascissa del punto in cui il grafico della funzione ha tangente orizzontale 	
54	Determina i parametri h e k in modo che la funzione $f(x) = \begin{cases} hx^3 + kx^2 & x < 1 \\ \frac{logx}{x} + 2 & x \ge 1 \end{cases}$ sia continua e derivabile in R .	h = -3; k = 5
55	Data la funzione $f(x) = \frac{x^2}{\sqrt{ x^2-1 }}$ tracciarne il grafico probabile, dopo averne determinato il campo di esistenza, il segno e gli eventuali asintoti verticali, orizzontali e obliqui	
56	Sia $a > 0, b \in R, c \in R$ Studia al variare di a,b e c la continuità e la derivabilità in x=0 della funzione: $f(x) = \begin{cases} sin(x^a) & x > 0 \\ sin(x+b) + c & x \le 0 \end{cases}$	
57	Determina k in modo che la funzione di equazione $y = ke^{2x}$ soddisfi la relazione $y'' + 2y' + 3y = 3e^{2x}$	

Dopo aver studiato la concavità delle seguenti funzioni, analizza le analogie e le differenze e adduci opportune riflessioni.

$f(x) = \sqrt[5]{(x^2 - 1)^2}$	
$f(x) = \sqrt[5]{x^2 - 1}$	
$f(x) = \sqrt[4]{x^2 - 1}$	
$f(x) = \sqrt[5]{(x^2 - 1)^4}$	
$f(x) = \sqrt[5]{(x^2 - 1)^3}$	
$f(x) = \sqrt[4]{(x^2 - 1)^3}$	
$f(x) = \sqrt[5]{(x^2 - 1)^6}$	
$f(x) = \sqrt[5]{(x^2 - 1)^7}$	
$f(x) = \sqrt[4]{(x^2 - 1)^5}$	

$f(x) = \sqrt[3]{(x^2 - 1)^{-2}}$	

MATEMATICA PER L'INGEGNERIA CHIMICA

In un campus universitario di 5000 studenti, la diffusione di un virus influenzale attraverso il corpo studentesco è modellato dalla seguente legge:

$$P(t) = \frac{4500}{1 + 300e^{-0.8t}} + 150$$

Dove P è il numero totale di persone infette e t è il tempo, misurato in giorni.

- 1. Studiare la funzione per tutte le t per cui è definita
- 2. Quanti studenti saranno infettati dopo 5 giorni?
- 3. Secondo questo modello, tutti gli studenti del campus saranno infettati con l'influenza?