Integrali multipli

Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l'estensione della definizione di integrale per una funzione reale di una variabile reale al caso di una funzione reale di due variabili reali

Definizione

L'integrale doppio di una funzione f sul rettangolo R è

$$\iint\limits_{R} f(x,y)dxdy = \lim_{\delta_{P}} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{ij}^{*}, y_{ij}^{*}) \cdot A_{ij}$$

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è *integrabile* sul rettangolo. (vedi Slide "Integrali multipli" oppure il testo Marcellini – Sbordone "Elementi di analisi matematica 2)

A seconda del dominio di integrazione e della funzione integranda, la risoluzione dell'integrale doppio può risultare più o meno facile

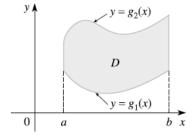
Il caso più semplice è quello in cui il dominio di integrazione è un rettangolo. Risolvere un integrale doppio si riduce, in questo caso, a risolvere due integrali semplici; posso integrare prima rispetto alla y e poi rispetto alla x o viceversa, secondo il seguente teorema che ci suggerisce anche la formula risolutiva da applicare.

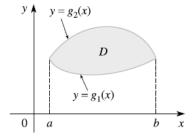
Teorema

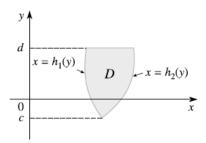
Data una funzione f è continua su un rettangolo $R = [a, b] \times [c, d]$;essa è integrabile e l'integrale doppio è uguale all'integrale iterato:

$$\iint_{[a,b]\times[c,d]} f(x,y) dx dy = \int_a^b \left(\int_c^d f(x,y) dy \right) dx = \int_c^d \left(\int_a^b f(x,y) dx \right) dy$$

Tuttavia, nella maggior parte dei casi, si ha a che fare con domini in cui la x e/o la y sono compresi tra due funzioni, così come appare schematizzato







Come appare evidente dai grafici riportati, nei primi due casi, la x è compresa tra due valori costanti, nel terzo caso, invece, la y è compresa tra due valori costanti. Questa discriminazione è molto importante perché ci suggerire la variabile rispetto a cui integrare per prima, così come meglio stabilito dalle seguenti definizioni

Definizione

Una regione $D \subset R^2$ è detta *y*–*semplice* se è compresa tra i grafici di due funzioni della variabile x, cioè se è del tipo

$$D = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \ g_1(x) \le y \le g_2(x)\}$$

Quindi l'area di una regione semplice è data dalla formula:

Area (D) =
$$\int_{a}^{b} [g_2(x) - g_1(x)] dx$$

Analogamente si definisce una regione x-semplice.

Per ogni funzione f continua su un insieme semplice D è integrabile su D, valgono le seguenti formule, dette formule di riduzione degli integrali doppi (o di Fubini):

$$D y - semplice \implies \iint f(x,y) dx dy = \int_a^b \left(\int_{g_1(x)}^{g_2(x)} f(x,y) dy \right) dx$$

$$D x - semplice \implies \iint f(x,y) dx dy = \int_{c}^{d} \left(\int_{h_{1}(x)}^{h_{2}(x)} f(x,y) dx \right) dy$$

Formule di Gauss

Mediante le formule di Gauss, che sono applicabili quando l'insieme di integrazione è un dominio regolare, il calcolo dell'integrale doppio esteso ad A si riconduce al calcolo dell'integrale curvilineo di una forma differenziale lineare, esteso alla frontiera di A.

L'utilizzazione di tali formule è opportuna e può risultare addirittura necessaria, quando il dominio di integrazione (regolare) è assegnato mediante una rappresentazione parametrica della frontiera. Anche qui è bene accertarsi che l'integrando sia continuo in tutto A.

Per applicare una delle due formule di Gauss all'integrale doppio

$$\iint\limits_A f(x,y)dxdy$$

occorre, in primo luogo determinare una funzione F(x, y) tale che si abbia:

$$f(x,y) = \frac{\partial F}{\partial x}$$
 oppure $f(x,y) = \frac{\partial F}{\partial y}$

Naturalmente la funzione F(x, y) si determina calcolando, per ogni fissato y, l'integrale indefinito

$$\int f(x,y)dx$$

oppure, per ogni fissato x, l'integrale indefinito

$$\int f(x,y)dy$$

Dopo ciò, l'integrale

$$\iint\limits_A f(x,y)dxdy$$

si esprime mediante uno degli integrali curvilinei

$$\iint\limits_A f(x,y)dxdy = \int\limits_{+\partial A} F(x,y)dy = -\int\limits_{+\partial A} F(x,y)dx$$

Calcolare i seguenti integrali nei domini indicati in figura

1	$\iint \frac{e^{arctgx}}{\sqrt{y}(1+x^2)(\sqrt{x^2+1}-1)} dxdy$	y=x ² +2	$2\left(1-e^{-\frac{\pi}{4}}\right)$
2	$\iint \frac{(x^2+2)dxdy}{y^2(x^2+1)\sqrt{x^2+x+3}}$	A	$\log \frac{2\sqrt{3}+1}{2\sqrt{3}-1}$
3	$\iint \frac{(3e^x + 2)(x^2 + 2)e^x}{y^2(x^2 + 1)(2e^{2x} + 3e^x + 1)} dxdy$	-1 0 × _x	$\log \frac{2e\sqrt{3e}}{(e+1)\sqrt{e+2}}$
4	$\iint \frac{x^2 + x + 1}{y^2 (1 - x)} dx dy$		$-\frac{3}{2} + 2log2 + \frac{1}{\sqrt{2}}arctg\frac{1}{\sqrt{2}}$
5	$\iint x(1+y^2dxdy)$	y= 4-x 4rx	$+\frac{1}{\sqrt{2}}arctg\frac{1}{\sqrt{2}}$ $\frac{17}{3} - 8log2$
6	$\iint cos\pi x \cdot cos\pi y dx dy$		$-\frac{4}{3\pi^2}$
7	$\iint \frac{xe^y}{e^y + 1} dx dy$	- 4607 × A A A C A C A C A C A C A C A C A C A	$\frac{3}{2}\log\frac{3}{2} - \frac{1}{4}$
8	$\iint \frac{\sqrt{x^2 + 4}}{1 + y^2} dx dy$	4 the A	$\frac{1}{3}(5\sqrt{5}-8)$

	CC dyda		1 12
9	$\iint \frac{dxdy}{x^2 + 1}$	y=x ² -1	1 — log2
10	$\iint \frac{xe^{2y}}{y+2} dx dy$	No le le de la constante de la	$\frac{3}{8}(e^4-5)$
11	$\iint \sqrt{\sin^2 x + 1} dx dy$	J J Standa	$\frac{2}{3}(2\sqrt{2}-1)$
12	$\iint x(1+y)^2 dx dy$	4	$\frac{1}{6}$
13	$\iint xy(1+y)^4 dxdy$	D 2: 1-4	1 12
14	$\iint \frac{(3e^y + 2)e^y}{(2e^{2y} + 3x + 1)^2} dx dy$	9124-311-111	$\frac{1}{2} + \frac{1}{3} \log \frac{2^7}{5\sqrt{3}}$
15	$\iint \frac{dxdy}{ye^x(1+ye^x)}$	3 5 5 × ×	
16	$\iint \frac{dxdy}{\sqrt{x}(2x+\sqrt{x})^2}$	44 44 44 44 44 44 44 44 44 44 44 44 44	$log3 - \frac{20}{9}log2$
17	$\iint \frac{dxdy}{(x+3)(x^2+2)y^2}$		$\frac{1}{24} \left(\log 3 + \frac{\pi}{\sqrt{3}} \right)$

		,
		Agranda de la companya de la company
18	$\iint \frac{(2x+3)}{(2x-y+3)^2} dxdy$	0 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19	$\iint \frac{1}{x^3 \cos^2 y} dx dy$	The state of the s
20	$\iint \frac{1}{\sqrt[3]{xy}} dx dy$	9:XX 9:XX
21	$\iint \frac{x(1-y)}{(1+x)\sqrt{y}(1+y)^2} dxdy$	
22	$\iint \frac{x}{(1+x^2)^2} dx dy$	A T
23	$\iint \frac{xy}{\sqrt{4-y^2}} dx dy$	To conso di circum human (contra O, raggio 2) To conso di collina (comissi 4 a 2, situati 2 suga ansi caretariana).
24	$\iint \frac{dxdy}{\sin^2 x \cdot \cos^2 x (2x + 1 - tgx)\cos^2 y}$	y= \frac{\frac{1}{2}}{A} \frac{\frac{1}{2}}{

25	$\iint \frac{dxdy}{y \cdot \sin^2 x \cdot \cos x}$	Towards of equations implicit as a series of the series of	
26	$\iint \frac{\cos y dx dy}{\left(2\sin\frac{x+3}{2} - x - 1\right) \cdot \cosh x}$	A $\pi/6$ coeff, angolare della retta $z = 1/2$.	
27	$\iint \frac{1 - x + 2y}{(1 + x^2)\left(1 - x + \sqrt[3]{arctgx}\right)} dxdy$	T- Curva di equazione: y=Variety x.	$-\frac{3}{4}\sqrt[3]{\left(\frac{\pi}{4}\right)^4}$
28	$\iint \frac{(2x + \log y)y}{(y\log y + 1)(1 + \log^2 y)} dxdy$	y= 4 x	$\frac{\pi}{4}$
29	$\iint \frac{(2y\sqrt{3}-x)^3\sqrt{tgx}}{(\sqrt{3}\cos x-x)\cos^3 x}dxdy$	-π/3 0 π/4 y=conx	$\frac{3}{4}$
30	$\iint \frac{x + 2y - settsinhx}{x\sqrt{1 + x^2}settsinh^2x} dxdy$	y= settrenhx y= settrenhx -x	log settsinh2 settsinh1
31	$\iint \frac{y}{1+x} dx dy$		$\frac{3}{4} + \frac{1}{2}\log\frac{3}{8}$

		y=√x y= 1/x y= 1/x y= 1/x	
32	$\iint \frac{dxdy}{1+\sin 2y}$	1 1/4 + ** ********************************	1 + log2
33	$\iint y^2 dx dy$	9 ye 60 x	$\frac{5}{9}\sqrt{2}$
34	$\iint (x^2 - y)\sqrt{1 - x^6} dx dy$	19 = x ² + 2x	$\frac{\pi}{4}$
35	$\iint y\sqrt{1-y^2}dxdy$	To cincomfenence di centro (0,0) e raggio 1 To cincomfenence di centro (1,0) e raggio 1	$\frac{1}{3}$
36	$\iint \frac{ydxdy}{x(1+y^2)^2}$	y sloge x	$\frac{\pi}{8} - \frac{1}{2}log2$
37	$\iint e^{-2y} \cdot \sin(x+y) dx dy$	What was a start of the start o	$\frac{\alpha\sqrt{2} - 5\alpha^2 + 1}{10} + \frac{1}{2}(\cos\alpha^2 - \cos\alpha)$
38	∬ e ^y dxdy	yeniconx A -yelay (1+x)	$\frac{1}{2}e^{\frac{\pi}{2}}-2$

	20 1 1		2
39	$\iint \frac{dxdy}{x(y^2+y+1)}$	Equations implicitly if it is the state of t	$\frac{2\pi}{9\sqrt{3}}$
40	$\iint \frac{y}{x^3 - 4x^2 + 5x - 2} dx dy$	$y = x+1$ $y = \sqrt{2x}$ 3 5	
41	$\iint x^2 y dx dy$	$y = \sqrt{\sin(2x)}$ $3 \Rightarrow x$ $\pi/2 \qquad x$	
42	$\iint \frac{1}{\sin x + \cos x} dx dy$	y = sinx y = cosx	
43	Calcolare il volume del solido che giace so $4y^2$ e sopra la regione del piano (x, y) limita x^2	tto la funzione $f(x,y) = 2x^2 +$ ta dalle curve $g(x) = x e h(x) =$	17/70
44	Calcolare il volume del solido che giace sotto la funzione $f(x,y) = 3x^2 + 9y^2$ e sopra la regione del piano (x,y) limitata dalle curve $g(x) = 3x$ e $h(x) = x^3$		1161/10
45	Calcolare il volume del solido che giace sotto la funzione $f(x,y) = x^2 + 2y^2$ e sopra la regione del piano (x,y) limitata dalle curve $g(x) = 4x$ e $h(x) = x^2$		42752/35
46	Calcolare $\iint (y-x)e^y dx$ nella porzione di piano contenuta nel prim $x=0 \text{ e le rette } y=x \text{ e } y=\frac{x+1}{2}$		$e-1-\sqrt{e}$
47	Calcolare $\iint \frac{dxdy}{(x+y)(1+y)}$ nel dominio esteso al primo quadrante de grafici delle funzioni $y=e^x-x$ e $y=e^{2x+y}$	elimitato dalla retta $x = 1$ e dai $-x$	$\frac{\pi}{8}$
48	Dato il dominio D limitato dalle rette $y =$ equazione $x = y^2$ determinare il seguente i $\iint x \cdot logy dx$	1, y = 2, x = 4 e dalla curva di ntegrale:	$-\frac{369}{50} - \frac{log2}{5} + log8192$
49	Determinare $\iint \frac{x}{y} e^y dx dy$ nel dominio $D = \{(x, y) \in R^2 : 0 \le x \le 1, $		$\frac{e-2}{2}$
50	Determinare		$\frac{1}{3}\log\left(\frac{7}{2} + \frac{3\sqrt{3}}{4}\right)$

	$\iint \frac{1}{(x+y+2)^2} dx dy$ $\text{nel dominio } D = \left\{ (x,y) \in R^2 \colon 0 \le x \le \frac{\pi}{3}, 0 \le y \le x \right\}$	
51	Determinare $\iint \frac{x}{(x^2-1)^2(y-1)^2} dxdy$	$\frac{1}{36}$
	$\iint (x^2 - 1)^2 (y - 1)^2 dx dy$ $dove D = \left\{ (x, y) \in R^2 : 0 \le x \le \frac{1}{2}, 0 \le y \le x^2 \right\}$	
52	Determinare $\iint \frac{1}{\sqrt{2+x-x^2}} dx dy$	$\frac{3}{2} - \sqrt{2} + \frac{1}{2} \arcsin \frac{1}{3}$
	dove $D = \{(x, y) \in R^2 : \frac{1}{2} \le x \le 1, 0 \le y \le x\}$	
53	Determinare $\iint x^2 y dx dy$	$\frac{\pi^2 + 8\pi - 8}{64}$
	dove l'integrale si intende nel dominio D, parte del piano racchiusa tra le curve di equazioni $y=sinx$ e $y=cosx$, per $\frac{\pi}{4} \le x \le \frac{\pi}{2}$	

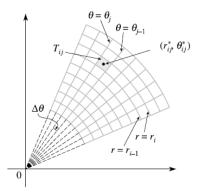
Cambiamento di variabili

Quando il dominio T è un disco, una corona, un settore circolare, per risolvere l'integrale doppio , conviene utilizzare le coordinate polari. In questo modo le regioni corrispondono, attraverso il cambiamento di variabili $T(\rho,\theta)=(\rho cos\theta,\,\rho sin\theta)$ a rettangoli del piano $\rho\theta$ detti anche rettangoli polari.

La trasformazione in coordinata polari ha jacobiano:

$$\left|\frac{\partial(x,y)}{\partial(\rho,\theta)}\right| = \begin{vmatrix} \cos\theta & -\rho\sin\theta\\ \sin\theta & \rho\cos\theta \end{vmatrix} = \rho$$

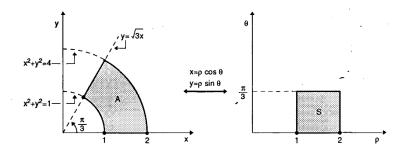
Lo jacobiano è dunque una funzione limitata sui limitati del piano $\rho\theta$ ed è diverso da zero tranne nei punti con $\rho=0$. La trasformazione è biunivoca, tranne nei punti del piano $\rho\theta$ con $\rho=0$, che vengono tutti mandati nell'origine del piano xy. Dunque sono soddisfatte le ipotesi del Teorema relativo al cambiamento di variabili nell'integrale.



Teorema

Sia $T(\rho,\theta)=(\rho cos\theta,\,\rho sin\theta)$. Sia $S\subset(0,\,+\infty)\times(0,\,2\pi)$ un aperto misurabile del piano $\rho\theta$ e sia T=T(S). Allora $\forall F\colon T\to R$ integrabile su T, vale la relazione

$$\iint_{T} f(x,y)dxdy = \iint_{S} f(\rho cos\theta, \rho sin\theta)\rho d\rho d\theta$$



Calcola i seguenti integrali doppi

1	$\iint \sin^3(x^2 + y^2) dx dy$	O VI VI X	$\frac{\pi}{6}$
2	$\iint \frac{xy(x^2 + y^2)^{-\frac{3}{2}}}{(1 + x^2 + y^2)^2} dxdy$	A	$\frac{1}{8} \left(\frac{1}{10} + \frac{\pi}{4} - arctg2 \right)$
3	$\iint \frac{x(x^2 - y^2)}{1 + [(x - 1)^2 + (y - 1)^2]^2} dxdy$	A	$\frac{\pi}{2}log2$
4	$\iint \frac{\sqrt{xy}}{x^2 + y^2} dx dy$		$\sqrt{2}$
5	$\iint xy \log(x^2 + y^2) dx dy$	2 3 x	$-log4 + \frac{1}{32}(-65 + 81log81)$

	cc dada.	v v	77(1
6	$\iint \frac{dxdy}{\sqrt{x^2 + y^2}}$	1 (1.1)	$\sqrt{2}(1-arcsinh1)$
7	$\iint \frac{x^2 - y^2}{x^2 + y^2} dx dy$	$D = \{(x, y) \in R^2 : 1 \le x^2 + y^2 \le 4, 0 \le y \le x, \\ 0 \le x \le \sqrt{3}y\}$	
8	$\iint \frac{y}{(1+x)^2} dx dy$	$D = \left\{ (x, y) \in R^2 : \frac{1}{9} \le x^2 + y^2 \le \frac{1}{4}, \\ \sqrt{3}x \le y \le 0, x \le 0 \right\}$	
9	$\iint \frac{ y }{(x^2+y^2)^2} dxdy$	$D = \{(x, y) \in R^2 : 1 \le x^2 + y^2 \le 4x, y \le \sqrt{3}x\}$	$\frac{1}{2}(2-log2)$
10	$\iint \frac{ x +y}{(x^2+y^2)^2}$	$D = \{(x, y) \in R^2 : 1 \le x^2 + y^2 \le 4, y \ge 0\}$	2
11	$\iint x \sqrt{\frac{1 - x^2 - y^2}{x^2 + y^2}} dx dy$	$D = \left\{ (x, y) \in R^2 : \frac{1}{4} \le x^2 + y^2 \le 1, 0 \le x \le y \right\}$	$-\frac{\sqrt{3}}{16}\left(\sqrt{2}-2\right)$
12	$\iint \frac{3+x+y}{x^2+y^2} dx dy$	$D = \left\{ (x, y) \in R^2 : 4 \le x^2 + y^2 \le 9, \frac{\sqrt{3}}{3} \le \frac{y}{x} \le 1 \right\}$	$\frac{\pi}{2}\log\frac{3}{2}$
13	$\iint 2xydxdy$	$\frac{\sqrt{3}}{3} \le \frac{y}{x} \le 1$ $D = \left\{ (x, y) \in R^2 : x^2 + y^2 \ge 1, \frac{x^2}{4} + y^2 \le 1 \right\}$	3
14	$\iint \frac{y^2}{1+x^2+y^2} dx dy$	$D = \{(x, y) \in R^2 : x^2 + y^2 \le 4, 0 \le y \le \sqrt{3}x\}$	$\frac{1}{48} (3\sqrt{3} - 4\pi)(-4 + \log 5)$
15	$\iint \frac{dxdy}{\sqrt{x^2 + y^2}}$	- c A A	$\frac{\pi}{2} - \frac{1}{\sqrt{2}}\log(3 + 2\sqrt{2})$
16	$\iint (x^2 + y^2)^{-3/2} dx dy$	A A MANAGE SEX V 220-1	$\frac{1}{4} \left(\frac{5}{8} \pi - 1 \right)$

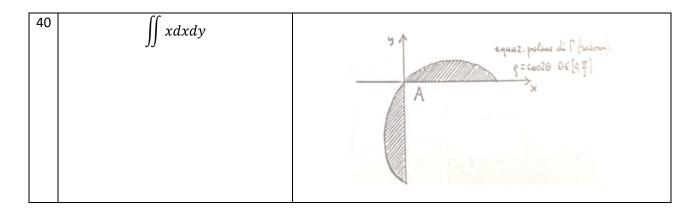
17	$\iint \frac{dxdy}{\sqrt{x^2 + y^2}}$	equazione polare di [1] g=1+ sen70 cos50 AAI 177/12 11 x	$\frac{1}{3} - \frac{1}{8}\sqrt{3}$
18	$\iint \frac{\arcsin^2 \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dx dy$	T	$\frac{7}{72}\pi(\pi^2-\pi\sqrt{3}-6)$
19	$\iint y^2 dx dy$	$\frac{y}{A} \left(x^{2} + y^{2}\right)^{3} - y^{2} = 0$	$\frac{3}{64}\pi$
20	$\iint y \cdot arctg^3 \frac{y}{x} dx dy$	A A A	
21	$\iint \left(\frac{y}{x}\right)^4 dx dy$	A 25-	$\frac{3}{16}\pi - \frac{1}{2}$
22	∬ ydxdy	equazione di Γ : $x^{2}+y^{2}+\frac{1}{3-\sqrt{x^{2}+y^{2}}}=0,$ 2 assiz $\frac{1}{2}$	

23	$\iint \frac{x}{x^2 + y^2} dx dy$	A A A A A A A A A A A A A A A A A A A	
24	$\iint \frac{xy}{y^2 - 4x^2} dx dy$	9=-XV3 1 6 1 7 9= -1 A A A A A A A A A A A A A A A A A A	
25	$\iint\limits_{A_1 \cup A_2} \frac{1}{y} dx dy$	3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3	
26	$\iint \frac{dxdy}{\sqrt{1-x^2-y^2}}$	178	
27	$\iint \frac{x^2 + y^2}{(x^2 - y^2)^2} dx dy$	10 A A A A A A A A A A A A A A A A A A A	

28	$\iint x^2 y dx dy$	x = -2 $y = x + 1 $ $y = -x - 2$	$\frac{1}{10}$
29	$\iint (x^2 + y dx dy)$	Il dominio è la parte di corona circolare delimitata da $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$ compresa fra le rette $y = x \ y = -x$	$\frac{15}{16}\pi + \frac{15}{8}$
30	∬ dxdy	$y = 2x$ $y = 3 - x$ $y = \frac{1}{2}x$ $y = 1 - x$	4 13
31	$\iint \frac{e^{\frac{y}{x^2}}}{x^2 y^2} dx dy$	$y = 2x^{2}$ $y = 2x^{2}$ $x = 2y^{2}$ $x = y^{2}$	$\frac{1}{3}(e^2-e)$
32	$\iint \frac{x^2y}{\sqrt{x^2 + y^2}} dx dy$	$x^{2} + y^{2} = 4$ $x = y$ $x^{2} + y^{2} = 1$	
33	$\iint \frac{x^2y}{\sqrt{x^2 + y^2}} dx dy$	$x^{2} + y^{2} = 1 \qquad (x - 1)^{2} + y^{2} = 1$ $y = \sqrt{3}x$	

Utilizzando una delle formule di Gauss-Green verificare le seguenti uguaglianze:

34	∬ydxdy	equazioni di l' (cicloide): x=t-sent te[0,20] y=1-cost te[0,20]
35	∬ xydxdy	equazioni di [(astenoide) { x=cost t \
36	∬ ydxdy	S
37	$\iint y^2 dx dy$	
38	$\iint \frac{dxdy}{(x+2)^2(y+3)}$	y= 1-x ²
39	$\iint (2x-1)dxdy$	equaz. polare di Γ (cardioide):



Integrali doppi di funzioni continue in insiemi misurabili NON compatti

Detto A un insieme misurabile non compatto, si possono distinguere due casi:

- 1. L'insieme A è limitato, ma non chiuso. Allora la funzione f ha dei punti di discontinuità (anche infiniti) sulla frontiera di A.
- 2. L'insieme A non è limitato. Allora, se A non è chiuso, la f ha dei punti di discontinuità sulla frontiera di A, mentre se A è chiuso, non esistono discontinuità di f.

Per la funzione f si pone il problema di stabilire se è sommabile e, in caso affermativo, di calcolarne l'integrale doppio esteso ad A.

Il problema può essere affrontato utilizzando il seguente teorema:

Sia f una funzione non negativa, continua nell'insieme misurabile A e sia $\{K_n\}$ una successione invadente di A. Se la successione $\left\{\int_{K_n} f d\mu\right\}$ è convergente, la funzione f è sommabile in A e risulta:

$$\int_{A} f d\mu = \lim_{n} \int_{K_{n}} f d\mu$$

Se la successione diverge, la funzione f non è sommabile in A.

Scelta una successione di insiemi compatti e misurabili, sia $\{K_n\}$, invadente l'insieme A, si calcola, per ogni fissato $n \in N$ l'integrale doppio:

$$I_n = \iint\limits_{K_n} f(x, y) dx dy$$

e si ricerca il limite della successione numerica $\{I_n\}$ la quale è regolare perché è monotona.

Se

$$\lim_{n\to\infty}I_n=\pm\infty$$

la funzione f non è sommabile in A.

Se

$$\lim_{n\to\infty}I_n=l\in R$$

la funzione è sommabile in A e l'integrale di f esteso ad A è uguale ad l

Se f assume valori sia positivi che negativi, detto $A_1(risp.A_2)$ l'insieme dei punti $P \in A: f(P) \ge 0$ ($risp.f(P) \le 0$), nell'ipotesi che i due insiemi A_1, A_2 siano misurabili si studia con lo stesso procedimento indicato, la sommabilità di f in A_1 e A_2 (ciò equivale a studiare la sommabilità in A delle funzioni f^+ ed f^- : ovviamente la f è sommabile in A se e solo se è tale sia in A_1 che in A_2 e allora l'integrale di f esteso ad A è uguale alla somma degli integrali di f estesi ad A_1 e A_2 .

Qualora gli insieme A_1 e A_2 non fossero misurabili, essi si utilizzano per costruire le funzioni f^+ ed f^- . Il procedimento si applicherà allora a tali funzioni: la f è sommabile in A se e solo se sono sommabili f^+ ed f^- e in tal caso l'integrale di f esteso ad A è uguale alla somma degli integrali di f^+ ed f^- estesi ad A.

Sempre nell'ipotesi che la funzione f non assuma valori di segno opposto, il procedimento basato sulle successioni invadenti A si può evitare quando A è l'interno di un dominio normale rispetto all'asse x o rispetto all'asse y, anche con l'intervallo base non compatto, relativo a due funzioni continue. Se, ad esempio, A è l'interno del dominio normale rispetto all'asse x definito dalle limitazioni $x \in (a,b), \alpha(x) \le y \le \beta(x)$, procedendo come se la funzione f(x,y) fosse continua in un insieme normale compatto si scrive il secondo membro della formula di riduzione:

$$\int_{a}^{b} dx \int_{\alpha(x)}^{\beta(x)} f(x, y) dy$$

e si calcola dapprima l'integrale "interno":

$$\int_{\alpha(x)}^{\beta(x)} f(x,y)dy$$

Nell'ipotesi che si ottenga una funzione $\Phi(x)$ generalmente continua in (a,b), si passa a calcolare l'integrale "esterno":

$$\int_{a}^{b} \Phi(x) dx$$

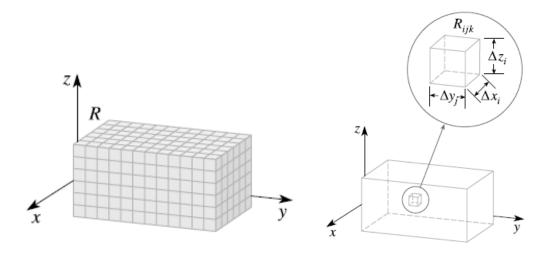
Se $\Phi(x)$ è sommabile in (a,b) si ottiene un numero λ : possiamo dire sinteticamente che se la funzione f(x,y) è sommabile in A, l'integrale doppio esteso ad A è uguale a λ ; se $\Phi(x)$ non è sommabile in (a,b) il risultato dell'integrale sarà $\pm \infty$ e la funzione f(x,y) sarà non sommabile in A.

Integrali tripli

Il caso più semplice è quello di una funzione f(x, y, z) definita su un parallelepipedo $R = [a, b] \times [c, d] \times [r, s]$

Per definire *l'integrale triplo* iniziamo col sezionare il parallelepipedo R mediante piani paralleli a ciascuno dei piani coordinati. A tale fine consideriamo una partizione dell'intervallo $[a,b],\ a=x_0< x_1< x_2< \cdots < x_n=b$, una dell'intervallo $[c,d],\ c=y_0< y_1< y_2< \cdots < y_m=d$ e infine una dell'intervallo [r,s],

 $\begin{aligned} \mathbf{r} &= z_0 < z_1 < z_2 < \cdot \cdot \cdot < z_l = s. \text{ Si ottengono in questo modo } n \times m \times l \text{ parallelepipedi } R_{ijk} = \\ [x_{i-1}, x_i] \times \big[y_{j-1}, \ y_j\big] \times [z_{k-1}, z_k] \text{ciascuno di volume } V_{ijk} = \big[x_{i-1} - x_i\big] \big[y_{j-1} - y_j\big] \big[z_{k-1} - z_k\big] \text{ e diagonale } \\ \delta_{ijk} &= \sqrt{(x_{i-1} - x_i)^2 + \left(y_{j-1} - y_j\right)^2 + (z_{k-1} - z_k)^2} \end{aligned}$



Scegliamo ora un punto base (x_{ij}, y_{ij}, z_{ij}) in ognuno dei parallelepipedi R_{ij} : possiamo così definire la tripla somma di Riemann:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{l} f(x_{ij}, y_{ij}, z_{ij}) V_{ijk}$$

Definizione

L'integrale triplo di f sul parallelepipedo R è il limite delle somme di Riemann al tendere a zero dell'ampiezza della partizione:

$$\iiint\limits_{R} f(x, y, z) dx dy dz = \lim_{\delta_{P} \to 0} \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{l} f(x_{ij}, y_{ij}, z_{ij}) V_{ijk}$$

quando tale limite esiste.

Come nel caso delle funzioni di due variabili, l'integrale si può definire attraverso il seguente teorema:

Una funzione limitata è integrabile sul rettangolo se e soltanto se l'estremo superiore delle somme inferiori, fra tutte partizioni del rettangolo, è uguale all'estremo inferiore delle somme superiori fra le partizioni. Tali estremi sono a loro volta uguali all'integrale doppio.

Si può asserire che l'integrale esiste sicuramente quando f è continua sul parallelepipedo e che valgono le formule di riduzione analoghe al quelle per gli integrali doppi.

Tutte le proprietà degli integrali doppi hanno un analogo per gli integrali tripli, così come le applicazioni in campo fisico.

Come per gli integrali doppi, definiamo l'integrale di una funzione limitata $f: E \to R$ su una regione limitata $E \subset R^3$ come l'integrale su un parallelepipedo $R \supset E$ della funzione f che coincide con f su E e vale zero al di fuori di E. Il volume di Peano–Jordan tridimensionale di un insieme E come l'integrale su E della funzione costante uno:

$$Volume(E) = \iiint_E dxdydz$$

sempre che tale integrale esista (in tale caso diciamo che *E* è misurabile secondo Peano–Jordan). Valgono nel caso tridimensionale le considerazioni teoriche del tutto analoghe a quelle già fatte nel caso della misura piana.

Per il calcolo concreto dell'integrale in tre variabili, abbiamo diversi modi di ordinare le variabili: a ciascuna di esse corrisponde una formula di riduzione a tre integrazioni semplici successive. Inoltre possiamo interpretare tali formule di riduzione pensando di eseguire dapprima una integrazione doppia e successivamente una semplice (o viceversa). Per gli integrali tripli abbiamo pertanto tre tipi diversi di formule di riduzione:

Teorema

Se f è continua sul parallelepipedo $R = [a, b] \times [c, d] \times [r, s]$ allora:

$$\iiint\limits_R f(x,y,z)dxdydz = \int_{[a,b]\times[c,d]} \left(\int\limits_r^s f(x,y,z)dz\right)dxdy = \int\limits_a^b \left(\int\limits_{[c,d]\times[r,s]} f(x,y,z)dydz\right)dx$$
$$= \int\limits_a^b \int\limits_c^d \int\limits_r^s f(x,y,z)dzdydx$$

Il significato del primo integrale iterato è facile da comprendere: si esegue prima l'integrazione più interna, rispetto alla variabile z, tenendo fissate x e y. Il risultato è una funzione delle due variabili x e y,

$$L(x,y) = \int_{r}^{s} f(x,y,z)dz$$

che verrà poi integrata in un secondo tempo.

Poiché la prima integrazione avviene lungo il segmento in cui x e y sono fissati e z varia fra r e s tale metodo di calcolo prende il nome di *integrazione per fili*.

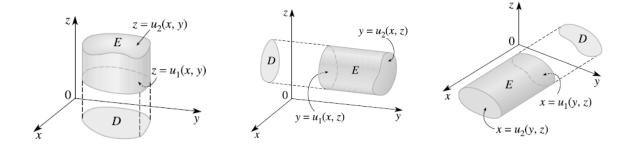
Nell'integrazione per strati invece, si esegue prima un integrale doppio sul rettangolo del piano in cui x è fissata, $\{x\} \times [c, d] \times [r, s]$, ottenendo così una funzione della sola variabile x, che viene successivamente integrata sull'intervallo [a, b].

Definizione.

Una regione solida E è detta z—semplice se è compresa tra i grafici di due funzione continue di x e y, cioè è di tipo

$$E = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in \mathbb{D}, u_1(x, y) \le z \le u_2(x, y)\}$$

dove $D \subset \mathbb{R}^2$, proiezione di E sul piano z=0, è un insieme piano semplice oppure semplicemente decomponibile.



Anche le considerazioni relative al cambiamento di variabili negli integrali doppi si possono estendere agli integrali tripli (e a integrali di ordine più elevato). Consideriamo una trasformazione T di classe C^1 dallo spazio R^3 in sé, descritta dalle relazioni

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = T \begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{bmatrix} x(u, v, w) \\ y(u, v, w) \\ z(u, v, w) \end{bmatrix}$$

Definiamo lo jacobiano di T come il determinante della matrice jacobiana

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = det J_T = det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{bmatrix}$$

Per le trasformazioni del piano, lo jacobiano rappresenta il fattore (puntuale) di trasformazione delle aree secondo T; analogamente, in dimensione tre lo jacobiano rappresenta il fattore infinitesimale di trasformazione dei volumi.

Se T sé biunivoca da un aperto misurabile S in un aperto misurabile T = T(S), (la misurabilità è intesa nel senso della teoria di Peano–Jordan in dimensione tre),

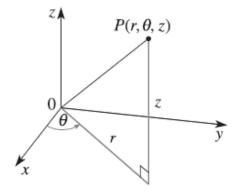
con determinante jacobiano sempre non nullo e limitato. Allora, per ogni $f: S \to T$ continua, vale la formula

$$\iiint\limits_R f(x,y,z)dxdydz = \iiint\limits_S f(x(u,v,w),y(u,v,w),z(u,v,w))|J|dudvdw$$

In R^3 le coordinate cilindriche (r, θ, z) sono legate alle coordinate cartesiane dalle relazioni

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{cases}$$

dove $r \ge 0$, $\theta \in [0,2\pi]$, $z \in R$



Lo Jacobiano associato alla trasformazione è:

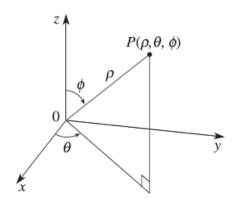
$$\left|\frac{\partial(x,y,z)}{\partial(r,\,\theta,z)}\right| = \det\begin{bmatrix} \cos\theta & -r\sin\theta & 0\\ \sin\theta & r\cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} = r$$

L'uso delle coordinate cilindriche è particolarmente utile per trattare domini dello spazio

con simmetria assiale rispetto all'asse z.

Un altro sistema di coordinate in R^3 è quello delle *coordinate sferiche*, a in cui ogni punto P è rappresentato dalla terna (r, ϕ, ϑ) :

$$\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \varphi \end{cases}$$



Il valore di r è la distanza dall'origine di P, φ (la colatitudine) è l'angolo che la retta passante per O e P forma col semiasse positivo delle z; infine ϑ (la longitudine) è la coordinata angolare della proiezione del segmento OP sul piano z=0. ϑ ha quindi lo stesso significato che nelle coordinate cilindriche. Si ha $r\geq 0$, $\varphi\in [0,\pi]$ e $\vartheta\in [0,2\pi)$.

Calcola i seguenti integrali tripli

4	CCC	$A = \{(x, y, z) \in R^3 : 0 \le x \le 1, 0 \le y \le x, 0 \le z \le x + y\}$	5
1		$A = \{(x, y, z) \in \mathbb{R}^{+}: 0 \le x \le 1, 0 \le y \le x, 0 \le z \le x + y\}$	
	JJJ		$8log^32$
	A		
2	(((A è il cilindroide di base B relativo alla funzione $z = 1 - 2xy$	-4
2	dxdydz	dove B è il dominio in figura	-4
	JJJ	actor of a common magain	
	11	y *	
		-2 + x + y = 0	
		- x	
		'	
-	CCC	V à il dominio interne alla efera di raggio 1	1.
3	$\iiint (2x^2 + y^2) dx dy dz$	V è il dominio interno alla sfera di raggio 1	$\frac{4}{5}\pi$
			5
	•		
4	(((· · · ·	V è il dominio limitato dal cono $z^2 = \frac{4}{9}(x^2 + y^2)$ e dal piano	9π
'	zdxdydz	z = 2	<i>510</i>
	V	Z – Z	
5	∭ 3ydydyda	$V = \left\{ (x, y, z) \in \mathbb{R}^3 \colon 0 \le x \le \frac{x}{2}, 0 \le y \le x, 0 \le z \le 1 \right\}$	1
	∭ 3ydxdydz	2. 2	$\overline{64}$
	V		
	CCC	V = ((v, v, z) ∈ P3, 0 < v, < z 0 < v, < v, 1 = 0 < z < 2)	16
6	$\iiint xzdxdydz$	$V = \{(x, y, z) \in R^3 : 0 \le x \le z, 0 \le y \le x + z, 0 \le z \le 2\}$	$\frac{16}{1}$
	JJJ		3
	ř		
7	(((,, , ,	$V = \left\{ (x, y, z) \in R^3 : 0 \le x \le \sqrt{1 - z^2}, 0 \le y \le 3, 0 \le z \le 1 \right\}$	3
	$\iiint xe^z dxdydz$	$V = \left((x, y, z) \in \mathbb{R} : 0 \le x \le y \le 2, 0 \le z \le 1 \right)$	$\frac{3}{2}$
	V V		2
8	∭ ydxdydz	$V = \left\{ (x, y, z) \in \mathbb{R}^3 : 0 \le x \le \sqrt{4 - y^2}, 0 \le y \le 2, 0 \le z \le y \right\}$	π
	JJJ yaxayaz	/	
	V		
9	CCC	W (() = P3 O = = (1 2 O = = (1 O = = (1))	1
9	yxdxdydz	$V = \left\{ (x, y, z) \in \mathbb{R}^3 : 0 \le x \le \sqrt{1 - y^2}, 0 \le y \le 1, 0 \le z \le 2 \right\}$	$\frac{1}{4}$
	JJJ V		4
10		$V = \{(x, y, z) \in R^3 : 0 \le x \le 3z, 0 \le y \le x, 0 \le z \le 3\}$	729
	∭ydxdydz		8
	V		J