TAVOLA DELLE DERIVATE

Funzione	Derivata
y = costante	y' = 0
y = x	y'=1
$y = x^n$	$y'=n\ x^{n-1}$
$y = \frac{1}{x}$	$y' = -\frac{1}{r^2}$
$y = \sqrt{x}$	$y' = -\frac{1}{x^2}$ $y' = \frac{1}{2\sqrt{x}}$ $y' = \frac{m}{n^{n}\sqrt{x^{n-m}}}$
$y = \sqrt[n]{x^m}$	$y' = \frac{m}{n\sqrt[n]{x^{n-m}}}$
y = senx	y' = cosx
y = cosx	y' = -senx
y = tanx	$y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$
y = ctg x	$y' = -\frac{1}{sen^2x}$
$y=e^x$	$y'=e^x$
$y = a^x$	$y' = a^x \ln a$
y = ln x	$y' = \frac{1}{x}$
$y = log_a x$	$y' = \frac{1}{x \cdot lna} = \frac{log_a e}{x}$
$y = x^x$	$y' = x^x \left(1 + \ln x \right)$
$y = \arcsin x$	$y' = \frac{1}{\sqrt{1 - x^2}}$
y = arccos x	$y' = \frac{1}{\sqrt{1 - x^2}}$ $y' = -\frac{1}{\sqrt{1 - x^2}}$ 1
y = arctg x	$y' = \frac{1}{1 + x^2}$
y = arcctg x	$y' = -\frac{1}{1+x^2}$

Tavola delle derivate

Prof. Roberto Capone

REGOLE DI DERIVAZIONE

Regola della somma (linearità)

$$D[\alpha f(x) + \beta g(x)] = \alpha f'(x) + \beta g'(x)$$

Regola del prodotto (o di Leibniz)

$$D[f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Regola del quoziente

$$D\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

Regola della funzione reciproca

$$D\left[\frac{1}{f(x)}\right] = -\frac{f'(x)}{f(x)^2}$$

Regola della catena o delle funzioni composte

$$D[f(g(x))] = f^{1}(g(x)) \cdot g'(x)$$

TAVOLA DELLE DERIVATE delle funzioni composte

Funzione	Derivata
$y = f(x)^n$	${}^{I}y' = nf(x)^{n-1} \cdot f'(x)$
$y = \frac{1}{f(x)}$	$y' = -\frac{1}{f(x)^2}$
$y = \sqrt{f(x)}$	$y' = -\frac{1}{f(x)^2}$ $y' = \frac{1}{2\sqrt{f(x)}} \cdot f'(x)$
y = senf(x)	$y' = cosf(x) \cdot f'(x)$
y = cosf(x)	$y' = -senf(x) \cdot f'(x)$
y = tanf(x)	$y' = \frac{1}{\cos^2 f(x)} \cdot f'(x) = 1 + \tan^2 f(x) \cdot f'(x)$
y = ctg f(x)	$y' = -\frac{1}{sen^2 f(x)} \cdot f'(x)$
$y=e^{f(x)}$	$y'=e^{f(x)}\cdot f'(x)$
$y=a^{f(x)}$	$y' = a^{f(x)} \ln a \cdot f'(x)$
$y = \ln f(x)$	$y' = \frac{1}{f(x)} \cdot f'(x)$
$y = log_a f(x)$	$y' = \frac{1}{f(x) \cdot lna} \cdot f'(x) = \frac{log_a e}{f(x)} \cdot f'(x)$
y = arcsinf(x)	$y' = \frac{1}{\sqrt{1 - f(x)^2}} \cdot f'(x)$
y = arccosf(x)	$y' = \frac{1}{\sqrt{1 - f(x)^2}} \cdot f'(x)$ $y' = -\frac{1}{\sqrt{1 - f(x)^2}} \cdot f'(x)$ $y' = \frac{1}{1 + f(x)^2} \cdot f'(x)$ $y' = -\frac{1}{1 + f(x)^2} \cdot f'(x)$
y = arctgf(x)	$y' = \frac{1}{1 + f(x)^2} \cdot f'(x)$
y = arcctg f(x)	$y' = -\frac{1}{1 + f(x)^2} \cdot f'(x)$